Source file src/cmd/internal/obj/s390x/asmz.go

     1  // Based on cmd/internal/obj/ppc64/asm9.go.
     2  //
     3  //    Copyright © 1994-1999 Lucent Technologies Inc.  All rights reserved.
     4  //    Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
     5  //    Portions Copyright © 1997-1999 Vita Nuova Limited
     6  //    Portions Copyright © 2000-2008 Vita Nuova Holdings Limited (www.vitanuova.com)
     7  //    Portions Copyright © 2004,2006 Bruce Ellis
     8  //    Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
     9  //    Revisions Copyright © 2000-2008 Lucent Technologies Inc. and others
    10  //    Portions Copyright © 2009 The Go Authors. All rights reserved.
    11  //
    12  // Permission is hereby granted, free of charge, to any person obtaining a copy
    13  // of this software and associated documentation files (the "Software"), to deal
    14  // in the Software without restriction, including without limitation the rights
    15  // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    16  // copies of the Software, and to permit persons to whom the Software is
    17  // furnished to do so, subject to the following conditions:
    18  //
    19  // The above copyright notice and this permission notice shall be included in
    20  // all copies or substantial portions of the Software.
    21  //
    22  // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    23  // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    24  // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
    25  // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    26  // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    27  // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    28  // THE SOFTWARE.
    29  
    30  package s390x
    31  
    32  import (
    33  	"cmd/internal/obj"
    34  	"cmd/internal/objabi"
    35  	"fmt"
    36  	"log"
    37  	"math"
    38  	"slices"
    39  )
    40  
    41  // ctxtz holds state while assembling a single function.
    42  // Each function gets a fresh ctxtz.
    43  // This allows for multiple functions to be safely concurrently assembled.
    44  type ctxtz struct {
    45  	ctxt       *obj.Link
    46  	newprog    obj.ProgAlloc
    47  	cursym     *obj.LSym
    48  	autosize   int32
    49  	instoffset int64
    50  	pc         int64
    51  }
    52  
    53  // instruction layout.
    54  const (
    55  	funcAlign = 16
    56  )
    57  
    58  type Optab struct {
    59  	as obj.As // opcode
    60  	i  uint8  // handler index
    61  	a1 uint8  // From
    62  	a2 uint8  // Reg
    63  	a3 uint8  // RestArgs[0]
    64  	a4 uint8  // RestArgs[1]
    65  	a5 uint8  // RestArgs[2]
    66  	a6 uint8  // To
    67  }
    68  
    69  var optab = []Optab{
    70  	// zero-length instructions
    71  	{i: 0, as: obj.ATEXT, a1: C_ADDR, a6: C_TEXTSIZE},
    72  	{i: 0, as: obj.ATEXT, a1: C_ADDR, a3: C_LCON, a6: C_TEXTSIZE},
    73  	{i: 0, as: obj.APCDATA, a1: C_LCON, a6: C_LCON},
    74  	{i: 0, as: obj.AFUNCDATA, a1: C_SCON, a6: C_ADDR},
    75  	{i: 0, as: obj.ANOP},
    76  	{i: 0, as: obj.ANOP, a1: C_SAUTO},
    77  
    78  	// move register
    79  	{i: 1, as: AMOVD, a1: C_REG, a6: C_REG},
    80  	{i: 1, as: AMOVB, a1: C_REG, a6: C_REG},
    81  	{i: 1, as: AMOVBZ, a1: C_REG, a6: C_REG},
    82  	{i: 1, as: AMOVW, a1: C_REG, a6: C_REG},
    83  	{i: 1, as: AMOVWZ, a1: C_REG, a6: C_REG},
    84  	{i: 1, as: AFMOVD, a1: C_FREG, a6: C_FREG},
    85  	{i: 1, as: AMOVDBR, a1: C_REG, a6: C_REG},
    86  
    87  	// load constant
    88  	{i: 26, as: AMOVD, a1: C_LACON, a6: C_REG},
    89  	{i: 26, as: AMOVW, a1: C_LACON, a6: C_REG},
    90  	{i: 26, as: AMOVWZ, a1: C_LACON, a6: C_REG},
    91  	{i: 3, as: AMOVD, a1: C_DCON, a6: C_REG},
    92  	{i: 3, as: AMOVW, a1: C_DCON, a6: C_REG},
    93  	{i: 3, as: AMOVWZ, a1: C_DCON, a6: C_REG},
    94  	{i: 3, as: AMOVB, a1: C_DCON, a6: C_REG},
    95  	{i: 3, as: AMOVBZ, a1: C_DCON, a6: C_REG},
    96  
    97  	// store constant
    98  	{i: 72, as: AMOVD, a1: C_SCON, a6: C_LAUTO},
    99  	{i: 72, as: AMOVD, a1: C_ADDCON, a6: C_LAUTO},
   100  	{i: 72, as: AMOVW, a1: C_SCON, a6: C_LAUTO},
   101  	{i: 72, as: AMOVW, a1: C_ADDCON, a6: C_LAUTO},
   102  	{i: 72, as: AMOVWZ, a1: C_SCON, a6: C_LAUTO},
   103  	{i: 72, as: AMOVWZ, a1: C_ADDCON, a6: C_LAUTO},
   104  	{i: 72, as: AMOVB, a1: C_SCON, a6: C_LAUTO},
   105  	{i: 72, as: AMOVB, a1: C_ADDCON, a6: C_LAUTO},
   106  	{i: 72, as: AMOVBZ, a1: C_SCON, a6: C_LAUTO},
   107  	{i: 72, as: AMOVBZ, a1: C_ADDCON, a6: C_LAUTO},
   108  	{i: 72, as: AMOVD, a1: C_SCON, a6: C_LOREG},
   109  	{i: 72, as: AMOVD, a1: C_ADDCON, a6: C_LOREG},
   110  	{i: 72, as: AMOVW, a1: C_SCON, a6: C_LOREG},
   111  	{i: 72, as: AMOVW, a1: C_ADDCON, a6: C_LOREG},
   112  	{i: 72, as: AMOVWZ, a1: C_SCON, a6: C_LOREG},
   113  	{i: 72, as: AMOVWZ, a1: C_ADDCON, a6: C_LOREG},
   114  	{i: 72, as: AMOVB, a1: C_SCON, a6: C_LOREG},
   115  	{i: 72, as: AMOVB, a1: C_ADDCON, a6: C_LOREG},
   116  	{i: 72, as: AMOVBZ, a1: C_SCON, a6: C_LOREG},
   117  	{i: 72, as: AMOVBZ, a1: C_ADDCON, a6: C_LOREG},
   118  
   119  	// store
   120  	{i: 35, as: AMOVD, a1: C_REG, a6: C_LAUTO},
   121  	{i: 35, as: AMOVW, a1: C_REG, a6: C_LAUTO},
   122  	{i: 35, as: AMOVWZ, a1: C_REG, a6: C_LAUTO},
   123  	{i: 35, as: AMOVBZ, a1: C_REG, a6: C_LAUTO},
   124  	{i: 35, as: AMOVB, a1: C_REG, a6: C_LAUTO},
   125  	{i: 35, as: AMOVDBR, a1: C_REG, a6: C_LAUTO},
   126  	{i: 35, as: AMOVHBR, a1: C_REG, a6: C_LAUTO},
   127  	{i: 35, as: AMOVD, a1: C_REG, a6: C_LOREG},
   128  	{i: 35, as: AMOVW, a1: C_REG, a6: C_LOREG},
   129  	{i: 35, as: AMOVWZ, a1: C_REG, a6: C_LOREG},
   130  	{i: 35, as: AMOVBZ, a1: C_REG, a6: C_LOREG},
   131  	{i: 35, as: AMOVB, a1: C_REG, a6: C_LOREG},
   132  	{i: 35, as: AMOVDBR, a1: C_REG, a6: C_LOREG},
   133  	{i: 35, as: AMOVHBR, a1: C_REG, a6: C_LOREG},
   134  	{i: 74, as: AMOVD, a1: C_REG, a6: C_ADDR},
   135  	{i: 74, as: AMOVW, a1: C_REG, a6: C_ADDR},
   136  	{i: 74, as: AMOVWZ, a1: C_REG, a6: C_ADDR},
   137  	{i: 74, as: AMOVBZ, a1: C_REG, a6: C_ADDR},
   138  	{i: 74, as: AMOVB, a1: C_REG, a6: C_ADDR},
   139  
   140  	// load
   141  	{i: 36, as: AMOVD, a1: C_LAUTO, a6: C_REG},
   142  	{i: 36, as: AMOVW, a1: C_LAUTO, a6: C_REG},
   143  	{i: 36, as: AMOVWZ, a1: C_LAUTO, a6: C_REG},
   144  	{i: 36, as: AMOVBZ, a1: C_LAUTO, a6: C_REG},
   145  	{i: 36, as: AMOVB, a1: C_LAUTO, a6: C_REG},
   146  	{i: 36, as: AMOVDBR, a1: C_LAUTO, a6: C_REG},
   147  	{i: 36, as: AMOVHBR, a1: C_LAUTO, a6: C_REG},
   148  	{i: 36, as: AMOVD, a1: C_LOREG, a6: C_REG},
   149  	{i: 36, as: AMOVW, a1: C_LOREG, a6: C_REG},
   150  	{i: 36, as: AMOVWZ, a1: C_LOREG, a6: C_REG},
   151  	{i: 36, as: AMOVBZ, a1: C_LOREG, a6: C_REG},
   152  	{i: 36, as: AMOVB, a1: C_LOREG, a6: C_REG},
   153  	{i: 36, as: AMOVDBR, a1: C_LOREG, a6: C_REG},
   154  	{i: 36, as: AMOVHBR, a1: C_LOREG, a6: C_REG},
   155  	{i: 75, as: AMOVD, a1: C_ADDR, a6: C_REG},
   156  	{i: 75, as: AMOVW, a1: C_ADDR, a6: C_REG},
   157  	{i: 75, as: AMOVWZ, a1: C_ADDR, a6: C_REG},
   158  	{i: 75, as: AMOVBZ, a1: C_ADDR, a6: C_REG},
   159  	{i: 75, as: AMOVB, a1: C_ADDR, a6: C_REG},
   160  
   161  	// interlocked load and op
   162  	{i: 99, as: ALAAG, a1: C_REG, a2: C_REG, a6: C_LOREG},
   163  
   164  	// integer arithmetic
   165  	{i: 2, as: AADD, a1: C_REG, a2: C_REG, a6: C_REG},
   166  	{i: 2, as: AADD, a1: C_REG, a6: C_REG},
   167  	{i: 22, as: AADD, a1: C_LCON, a2: C_REG, a6: C_REG},
   168  	{i: 22, as: AADD, a1: C_LCON, a6: C_REG},
   169  	{i: 12, as: AADD, a1: C_LOREG, a6: C_REG},
   170  	{i: 12, as: AADD, a1: C_LAUTO, a6: C_REG},
   171  	{i: 21, as: ASUB, a1: C_LCON, a2: C_REG, a6: C_REG},
   172  	{i: 21, as: ASUB, a1: C_LCON, a6: C_REG},
   173  	{i: 12, as: ASUB, a1: C_LOREG, a6: C_REG},
   174  	{i: 12, as: ASUB, a1: C_LAUTO, a6: C_REG},
   175  	{i: 4, as: AMULHD, a1: C_REG, a6: C_REG},
   176  	{i: 4, as: AMULHD, a1: C_REG, a2: C_REG, a6: C_REG},
   177  	{i: 62, as: AMLGR, a1: C_REG, a6: C_REG},
   178  	{i: 2, as: ADIVW, a1: C_REG, a2: C_REG, a6: C_REG},
   179  	{i: 2, as: ADIVW, a1: C_REG, a6: C_REG},
   180  	{i: 10, as: ASUB, a1: C_REG, a2: C_REG, a6: C_REG},
   181  	{i: 10, as: ASUB, a1: C_REG, a6: C_REG},
   182  	{i: 47, as: ANEG, a1: C_REG, a6: C_REG},
   183  	{i: 47, as: ANEG, a6: C_REG},
   184  
   185  	// integer logical
   186  	{i: 6, as: AAND, a1: C_REG, a2: C_REG, a6: C_REG},
   187  	{i: 6, as: AAND, a1: C_REG, a6: C_REG},
   188  	{i: 23, as: AAND, a1: C_LCON, a6: C_REG},
   189  	{i: 12, as: AAND, a1: C_LOREG, a6: C_REG},
   190  	{i: 12, as: AAND, a1: C_LAUTO, a6: C_REG},
   191  	{i: 6, as: AANDW, a1: C_REG, a2: C_REG, a6: C_REG},
   192  	{i: 6, as: AANDW, a1: C_REG, a6: C_REG},
   193  	{i: 24, as: AANDW, a1: C_LCON, a6: C_REG},
   194  	{i: 12, as: AANDW, a1: C_LOREG, a6: C_REG},
   195  	{i: 12, as: AANDW, a1: C_LAUTO, a6: C_REG},
   196  	{i: 7, as: ASLD, a1: C_REG, a6: C_REG},
   197  	{i: 7, as: ASLD, a1: C_REG, a2: C_REG, a6: C_REG},
   198  	{i: 7, as: ASLD, a1: C_SCON, a2: C_REG, a6: C_REG},
   199  	{i: 7, as: ASLD, a1: C_SCON, a6: C_REG},
   200  	{i: 13, as: ARNSBG, a1: C_SCON, a3: C_SCON, a4: C_SCON, a5: C_REG, a6: C_REG},
   201  
   202  	// compare and swap
   203  	{i: 79, as: ACSG, a1: C_REG, a2: C_REG, a6: C_SOREG},
   204  
   205  	// floating point
   206  	{i: 32, as: AFADD, a1: C_FREG, a6: C_FREG},
   207  	{i: 33, as: AFABS, a1: C_FREG, a6: C_FREG},
   208  	{i: 33, as: AFABS, a6: C_FREG},
   209  	{i: 34, as: AFMADD, a1: C_FREG, a2: C_FREG, a6: C_FREG},
   210  	{i: 32, as: AFMUL, a1: C_FREG, a6: C_FREG},
   211  	{i: 36, as: AFMOVD, a1: C_LAUTO, a6: C_FREG},
   212  	{i: 36, as: AFMOVD, a1: C_LOREG, a6: C_FREG},
   213  	{i: 75, as: AFMOVD, a1: C_ADDR, a6: C_FREG},
   214  	{i: 35, as: AFMOVD, a1: C_FREG, a6: C_LAUTO},
   215  	{i: 35, as: AFMOVD, a1: C_FREG, a6: C_LOREG},
   216  	{i: 74, as: AFMOVD, a1: C_FREG, a6: C_ADDR},
   217  	{i: 67, as: AFMOVD, a1: C_ZCON, a6: C_FREG},
   218  	{i: 81, as: ALDGR, a1: C_REG, a6: C_FREG},
   219  	{i: 81, as: ALGDR, a1: C_FREG, a6: C_REG},
   220  	{i: 82, as: ACEFBRA, a1: C_REG, a6: C_FREG},
   221  	{i: 83, as: ACFEBRA, a1: C_FREG, a6: C_REG},
   222  	{i: 48, as: AFIEBR, a1: C_SCON, a2: C_FREG, a6: C_FREG},
   223  	{i: 49, as: ACPSDR, a1: C_FREG, a2: C_FREG, a6: C_FREG},
   224  	{i: 50, as: ALTDBR, a1: C_FREG, a6: C_FREG},
   225  	{i: 51, as: ATCDB, a1: C_FREG, a6: C_SCON},
   226  
   227  	// load symbol address (plus offset)
   228  	{i: 19, as: AMOVD, a1: C_SYMADDR, a6: C_REG},
   229  	{i: 93, as: AMOVD, a1: C_GOTADDR, a6: C_REG},
   230  	{i: 94, as: AMOVD, a1: C_TLS_LE, a6: C_REG},
   231  	{i: 95, as: AMOVD, a1: C_TLS_IE, a6: C_REG},
   232  
   233  	// system call
   234  	{i: 5, as: ASYSCALL},
   235  	{i: 77, as: ASYSCALL, a1: C_SCON},
   236  
   237  	// branch
   238  	{i: 16, as: ABEQ, a6: C_SBRA},
   239  	{i: 16, as: ABRC, a1: C_SCON, a6: C_SBRA},
   240  	{i: 11, as: ABR, a6: C_LBRA},
   241  	{i: 16, as: ABC, a1: C_SCON, a2: C_REG, a6: C_LBRA},
   242  	{i: 18, as: ABR, a6: C_REG},
   243  	{i: 18, as: ABR, a1: C_REG, a6: C_REG},
   244  	{i: 15, as: ABR, a6: C_ZOREG},
   245  	{i: 15, as: ABC, a6: C_ZOREG},
   246  
   247  	// compare and branch
   248  	{i: 89, as: ACGRJ, a1: C_SCON, a2: C_REG, a3: C_REG, a6: C_SBRA},
   249  	{i: 89, as: ACMPBEQ, a1: C_REG, a2: C_REG, a6: C_SBRA},
   250  	{i: 89, as: ACLGRJ, a1: C_SCON, a2: C_REG, a3: C_REG, a6: C_SBRA},
   251  	{i: 89, as: ACMPUBEQ, a1: C_REG, a2: C_REG, a6: C_SBRA},
   252  	{i: 90, as: ACGIJ, a1: C_SCON, a2: C_REG, a3: C_ADDCON, a6: C_SBRA},
   253  	{i: 90, as: ACGIJ, a1: C_SCON, a2: C_REG, a3: C_SCON, a6: C_SBRA},
   254  	{i: 90, as: ACMPBEQ, a1: C_REG, a3: C_ADDCON, a6: C_SBRA},
   255  	{i: 90, as: ACMPBEQ, a1: C_REG, a3: C_SCON, a6: C_SBRA},
   256  	{i: 90, as: ACLGIJ, a1: C_SCON, a2: C_REG, a3: C_ADDCON, a6: C_SBRA},
   257  	{i: 90, as: ACMPUBEQ, a1: C_REG, a3: C_ANDCON, a6: C_SBRA},
   258  
   259  	// branch on count
   260  	{i: 41, as: ABRCT, a1: C_REG, a6: C_SBRA},
   261  	{i: 41, as: ABRCTG, a1: C_REG, a6: C_SBRA},
   262  
   263  	// move on condition
   264  	{i: 17, as: AMOVDEQ, a1: C_REG, a6: C_REG},
   265  
   266  	// load on condition
   267  	{i: 25, as: ALOCGR, a1: C_SCON, a2: C_REG, a6: C_REG},
   268  
   269  	// find leftmost one
   270  	{i: 8, as: AFLOGR, a1: C_REG, a6: C_REG},
   271  
   272  	// population count
   273  	{i: 9, as: APOPCNT, a1: C_REG, a6: C_REG},
   274  
   275  	// compare
   276  	{i: 70, as: ACMP, a1: C_REG, a6: C_REG},
   277  	{i: 71, as: ACMP, a1: C_REG, a6: C_LCON},
   278  	{i: 70, as: ACMPU, a1: C_REG, a6: C_REG},
   279  	{i: 71, as: ACMPU, a1: C_REG, a6: C_LCON},
   280  	{i: 70, as: AFCMPO, a1: C_FREG, a6: C_FREG},
   281  	{i: 70, as: AFCMPO, a1: C_FREG, a2: C_REG, a6: C_FREG},
   282  
   283  	// test under mask
   284  	{i: 91, as: ATMHH, a1: C_REG, a6: C_ANDCON},
   285  
   286  	// insert program mask
   287  	{i: 92, as: AIPM, a1: C_REG},
   288  
   289  	// set program mask
   290  	{i: 76, as: ASPM, a1: C_REG},
   291  
   292  	// 32-bit access registers
   293  	{i: 68, as: AMOVW, a1: C_AREG, a6: C_REG},
   294  	{i: 68, as: AMOVWZ, a1: C_AREG, a6: C_REG},
   295  	{i: 69, as: AMOVW, a1: C_REG, a6: C_AREG},
   296  	{i: 69, as: AMOVWZ, a1: C_REG, a6: C_AREG},
   297  
   298  	// macros
   299  	{i: 96, as: ACLEAR, a1: C_LCON, a6: C_LOREG},
   300  	{i: 96, as: ACLEAR, a1: C_LCON, a6: C_LAUTO},
   301  
   302  	// load/store multiple
   303  	{i: 97, as: ASTMG, a1: C_REG, a2: C_REG, a6: C_LOREG},
   304  	{i: 97, as: ASTMG, a1: C_REG, a2: C_REG, a6: C_LAUTO},
   305  	{i: 98, as: ALMG, a1: C_LOREG, a2: C_REG, a6: C_REG},
   306  	{i: 98, as: ALMG, a1: C_LAUTO, a2: C_REG, a6: C_REG},
   307  
   308  	// bytes
   309  	{i: 40, as: ABYTE, a1: C_SCON},
   310  	{i: 40, as: AWORD, a1: C_LCON},
   311  	{i: 31, as: ADWORD, a1: C_LCON},
   312  	{i: 31, as: ADWORD, a1: C_DCON},
   313  
   314  	// fast synchronization
   315  	{i: 80, as: ASYNC},
   316  
   317  	// store clock
   318  	{i: 88, as: ASTCK, a6: C_SAUTO},
   319  	{i: 88, as: ASTCK, a6: C_SOREG},
   320  
   321  	// storage and storage
   322  	{i: 84, as: AMVC, a1: C_SCON, a3: C_LOREG, a6: C_LOREG},
   323  	{i: 84, as: AMVC, a1: C_SCON, a3: C_LOREG, a6: C_LAUTO},
   324  	{i: 84, as: AMVC, a1: C_SCON, a3: C_LAUTO, a6: C_LAUTO},
   325  
   326  	// address
   327  	{i: 85, as: ALARL, a1: C_LCON, a6: C_REG},
   328  	{i: 85, as: ALARL, a1: C_SYMADDR, a6: C_REG},
   329  	{i: 86, as: ALA, a1: C_SOREG, a6: C_REG},
   330  	{i: 86, as: ALA, a1: C_SAUTO, a6: C_REG},
   331  	{i: 87, as: AEXRL, a1: C_SYMADDR, a6: C_REG},
   332  
   333  	// undefined (deliberate illegal instruction)
   334  	{i: 78, as: obj.AUNDEF},
   335  
   336  	// Break point instruction(0x0001 opcode)
   337  	{i: 73, as: ABRRK},
   338  
   339  	// 2 byte no-operation
   340  	{i: 66, as: ANOPH},
   341  
   342  	// crypto instructions
   343  
   344  	// KM
   345  	{i: 124, as: AKM, a1: C_REG, a6: C_REG},
   346  
   347  	// KDSA
   348  	{i: 125, as: AKDSA, a1: C_REG, a6: C_REG},
   349  
   350  	// KMA
   351  	{i: 126, as: AKMA, a1: C_REG, a2: C_REG, a6: C_REG},
   352  
   353  	// vector instructions
   354  
   355  	// VRX store
   356  	{i: 100, as: AVST, a1: C_VREG, a6: C_SOREG},
   357  	{i: 100, as: AVST, a1: C_VREG, a6: C_SAUTO},
   358  	{i: 100, as: AVSTEG, a1: C_SCON, a2: C_VREG, a6: C_SOREG},
   359  	{i: 100, as: AVSTEG, a1: C_SCON, a2: C_VREG, a6: C_SAUTO},
   360  
   361  	// VRX load
   362  	{i: 101, as: AVL, a1: C_SOREG, a6: C_VREG},
   363  	{i: 101, as: AVL, a1: C_SAUTO, a6: C_VREG},
   364  	{i: 101, as: AVLEG, a1: C_SCON, a3: C_SOREG, a6: C_VREG},
   365  	{i: 101, as: AVLEG, a1: C_SCON, a3: C_SAUTO, a6: C_VREG},
   366  
   367  	// VRV scatter
   368  	{i: 102, as: AVSCEG, a1: C_SCON, a2: C_VREG, a6: C_SOREG},
   369  	{i: 102, as: AVSCEG, a1: C_SCON, a2: C_VREG, a6: C_SAUTO},
   370  
   371  	// VRV gather
   372  	{i: 103, as: AVGEG, a1: C_SCON, a3: C_SOREG, a6: C_VREG},
   373  	{i: 103, as: AVGEG, a1: C_SCON, a3: C_SAUTO, a6: C_VREG},
   374  
   375  	// VRS element shift/rotate and load gr to/from vr element
   376  	{i: 104, as: AVESLG, a1: C_SCON, a2: C_VREG, a6: C_VREG},
   377  	{i: 104, as: AVESLG, a1: C_REG, a2: C_VREG, a6: C_VREG},
   378  	{i: 104, as: AVESLG, a1: C_SCON, a6: C_VREG},
   379  	{i: 104, as: AVESLG, a1: C_REG, a6: C_VREG},
   380  	{i: 104, as: AVLGVG, a1: C_SCON, a2: C_VREG, a6: C_REG},
   381  	{i: 104, as: AVLGVG, a1: C_REG, a2: C_VREG, a6: C_REG},
   382  	{i: 104, as: AVLVGG, a1: C_SCON, a2: C_REG, a6: C_VREG},
   383  	{i: 104, as: AVLVGG, a1: C_REG, a2: C_REG, a6: C_VREG},
   384  
   385  	// VRS store multiple
   386  	{i: 105, as: AVSTM, a1: C_VREG, a2: C_VREG, a6: C_SOREG},
   387  	{i: 105, as: AVSTM, a1: C_VREG, a2: C_VREG, a6: C_SAUTO},
   388  
   389  	// VRS load multiple
   390  	{i: 106, as: AVLM, a1: C_SOREG, a2: C_VREG, a6: C_VREG},
   391  	{i: 106, as: AVLM, a1: C_SAUTO, a2: C_VREG, a6: C_VREG},
   392  
   393  	// VRS store with length
   394  	{i: 107, as: AVSTL, a1: C_REG, a2: C_VREG, a6: C_SOREG},
   395  	{i: 107, as: AVSTL, a1: C_REG, a2: C_VREG, a6: C_SAUTO},
   396  
   397  	// VRS load with length
   398  	{i: 108, as: AVLL, a1: C_REG, a3: C_SOREG, a6: C_VREG},
   399  	{i: 108, as: AVLL, a1: C_REG, a3: C_SAUTO, a6: C_VREG},
   400  
   401  	// VRI-a
   402  	{i: 109, as: AVGBM, a1: C_ANDCON, a6: C_VREG},
   403  	{i: 109, as: AVZERO, a6: C_VREG},
   404  	{i: 109, as: AVREPIG, a1: C_ADDCON, a6: C_VREG},
   405  	{i: 109, as: AVREPIG, a1: C_SCON, a6: C_VREG},
   406  	{i: 109, as: AVLEIG, a1: C_SCON, a3: C_ADDCON, a6: C_VREG},
   407  	{i: 109, as: AVLEIG, a1: C_SCON, a3: C_SCON, a6: C_VREG},
   408  
   409  	// VRI-b generate mask
   410  	{i: 110, as: AVGMG, a1: C_SCON, a3: C_SCON, a6: C_VREG},
   411  
   412  	// VRI-c replicate
   413  	{i: 111, as: AVREPG, a1: C_UCON, a2: C_VREG, a6: C_VREG},
   414  
   415  	// VRI-d element rotate and insert under mask and
   416  	// shift left double by byte
   417  	{i: 112, as: AVERIMG, a1: C_SCON, a2: C_VREG, a3: C_VREG, a6: C_VREG},
   418  	{i: 112, as: AVSLDB, a1: C_SCON, a2: C_VREG, a3: C_VREG, a6: C_VREG},
   419  
   420  	// VRI-d fp test data class immediate
   421  	{i: 113, as: AVFTCIDB, a1: C_SCON, a2: C_VREG, a6: C_VREG},
   422  
   423  	// VRR-a load reg
   424  	{i: 114, as: AVLR, a1: C_VREG, a6: C_VREG},
   425  
   426  	// VRR-a compare
   427  	{i: 115, as: AVECG, a1: C_VREG, a6: C_VREG},
   428  
   429  	// VRR-b
   430  	{i: 117, as: AVCEQG, a1: C_VREG, a2: C_VREG, a6: C_VREG},
   431  	{i: 117, as: AVFAEF, a1: C_VREG, a2: C_VREG, a6: C_VREG},
   432  	{i: 117, as: AVPKSG, a1: C_VREG, a2: C_VREG, a6: C_VREG},
   433  
   434  	// VRR-c
   435  	{i: 118, as: AVAQ, a1: C_VREG, a2: C_VREG, a6: C_VREG},
   436  	{i: 118, as: AVAQ, a1: C_VREG, a6: C_VREG},
   437  	{i: 118, as: AVNOT, a1: C_VREG, a6: C_VREG},
   438  	{i: 123, as: AVPDI, a1: C_SCON, a2: C_VREG, a3: C_VREG, a6: C_VREG},
   439  
   440  	// VRR-c shifts
   441  	{i: 119, as: AVERLLVG, a1: C_VREG, a2: C_VREG, a6: C_VREG},
   442  	{i: 119, as: AVERLLVG, a1: C_VREG, a6: C_VREG},
   443  
   444  	// VRR-c floating point min/max
   445  	{i: 128, as: AVFMAXDB, a1: C_SCON, a2: C_VREG, a3: C_VREG, a6: C_VREG},
   446  	{i: 128, as: AWFMAXDB, a1: C_SCON, a2: C_VREG, a3: C_VREG, a6: C_VREG},
   447  	{i: 128, as: AWFMAXDB, a1: C_SCON, a2: C_FREG, a3: C_FREG, a6: C_FREG},
   448  
   449  	// VRR-d
   450  	{i: 120, as: AVACQ, a1: C_VREG, a2: C_VREG, a3: C_VREG, a6: C_VREG},
   451  
   452  	// VRR-e
   453  	{i: 121, as: AVSEL, a1: C_VREG, a2: C_VREG, a3: C_VREG, a6: C_VREG},
   454  
   455  	// VRR-f
   456  	{i: 122, as: AVLVGP, a1: C_REG, a2: C_REG, a6: C_VREG},
   457  
   458  	// MVC storage and storage
   459  	{i: 127, as: AMVCLE, a1: C_LOREG, a2: C_REG, a6: C_REG},
   460  	{i: 127, as: AMVCLE, a1: C_SCON, a2: C_REG, a6: C_REG},
   461  }
   462  
   463  var oprange [ALAST & obj.AMask][]Optab
   464  
   465  var xcmp [C_NCLASS][C_NCLASS]bool
   466  
   467  func spanz(ctxt *obj.Link, cursym *obj.LSym, newprog obj.ProgAlloc) {
   468  	if ctxt.Retpoline {
   469  		ctxt.Diag("-spectre=ret not supported on s390x")
   470  		ctxt.Retpoline = false // don't keep printing
   471  	}
   472  
   473  	p := cursym.Func().Text
   474  	if p == nil || p.Link == nil { // handle external functions and ELF section symbols
   475  		return
   476  	}
   477  
   478  	if oprange[AORW&obj.AMask] == nil {
   479  		ctxt.Diag("s390x ops not initialized, call s390x.buildop first")
   480  	}
   481  
   482  	c := ctxtz{ctxt: ctxt, newprog: newprog, cursym: cursym, autosize: int32(p.To.Offset)}
   483  
   484  	buffer := make([]byte, 0)
   485  	changed := true
   486  	loop := 0
   487  	nrelocs0 := len(c.cursym.R)
   488  	for changed {
   489  		if loop > 100 {
   490  			c.ctxt.Diag("stuck in spanz loop")
   491  			break
   492  		}
   493  		changed = false
   494  		buffer = buffer[:0]
   495  		for i := range c.cursym.R[nrelocs0:] {
   496  			c.cursym.R[nrelocs0+i] = obj.Reloc{}
   497  		}
   498  		c.cursym.R = c.cursym.R[:nrelocs0] // preserve marker relocations generated by the compiler
   499  		for p := c.cursym.Func().Text; p != nil; p = p.Link {
   500  			pc := int64(len(buffer))
   501  			if pc != p.Pc {
   502  				changed = true
   503  			}
   504  			p.Pc = pc
   505  			c.pc = p.Pc
   506  			c.asmout(p, &buffer)
   507  			if pc == int64(len(buffer)) {
   508  				switch p.As {
   509  				case obj.ANOP, obj.AFUNCDATA, obj.APCDATA, obj.ATEXT:
   510  					// ok
   511  				default:
   512  					c.ctxt.Diag("zero-width instruction\n%v", p)
   513  				}
   514  			}
   515  		}
   516  		loop++
   517  	}
   518  
   519  	c.cursym.Size = int64(len(buffer))
   520  	if c.cursym.Size%funcAlign != 0 {
   521  		c.cursym.Size += funcAlign - (c.cursym.Size % funcAlign)
   522  	}
   523  	c.cursym.Grow(c.cursym.Size)
   524  	copy(c.cursym.P, buffer)
   525  
   526  	// Mark nonpreemptible instruction sequences.
   527  	// We use REGTMP as a scratch register during call injection,
   528  	// so instruction sequences that use REGTMP are unsafe to
   529  	// preempt asynchronously.
   530  	obj.MarkUnsafePoints(c.ctxt, c.cursym.Func().Text, c.newprog, c.isUnsafePoint, nil)
   531  }
   532  
   533  // Return whether p is an unsafe point.
   534  func (c *ctxtz) isUnsafePoint(p *obj.Prog) bool {
   535  	if p.From.Reg == REGTMP || p.To.Reg == REGTMP || p.Reg == REGTMP {
   536  		return true
   537  	}
   538  	for _, a := range p.RestArgs {
   539  		if a.Reg == REGTMP {
   540  			return true
   541  		}
   542  	}
   543  	return p.Mark&USETMP != 0
   544  }
   545  
   546  func isint32(v int64) bool {
   547  	return int64(int32(v)) == v
   548  }
   549  
   550  func isuint32(v uint64) bool {
   551  	return uint64(uint32(v)) == v
   552  }
   553  
   554  func (c *ctxtz) aclass(a *obj.Addr) int {
   555  	switch a.Type {
   556  	case obj.TYPE_NONE:
   557  		return C_NONE
   558  
   559  	case obj.TYPE_REG:
   560  		if REG_R0 <= a.Reg && a.Reg <= REG_R15 {
   561  			return C_REG
   562  		}
   563  		if REG_F0 <= a.Reg && a.Reg <= REG_F15 {
   564  			return C_FREG
   565  		}
   566  		if REG_AR0 <= a.Reg && a.Reg <= REG_AR15 {
   567  			return C_AREG
   568  		}
   569  		if REG_V0 <= a.Reg && a.Reg <= REG_V31 {
   570  			return C_VREG
   571  		}
   572  		return C_GOK
   573  
   574  	case obj.TYPE_MEM:
   575  		switch a.Name {
   576  		case obj.NAME_EXTERN,
   577  			obj.NAME_STATIC:
   578  			if a.Sym == nil {
   579  				// must have a symbol
   580  				break
   581  			}
   582  			c.instoffset = a.Offset
   583  			if a.Sym.Type == objabi.STLSBSS {
   584  				if c.ctxt.Flag_shared {
   585  					return C_TLS_IE // initial exec model
   586  				}
   587  				return C_TLS_LE // local exec model
   588  			}
   589  			return C_ADDR
   590  
   591  		case obj.NAME_GOTREF:
   592  			return C_GOTADDR
   593  
   594  		case obj.NAME_AUTO:
   595  			if a.Reg == REGSP {
   596  				// unset base register for better printing, since
   597  				// a.Offset is still relative to pseudo-SP.
   598  				a.Reg = obj.REG_NONE
   599  			}
   600  			c.instoffset = int64(c.autosize) + a.Offset
   601  			if c.instoffset >= -BIG && c.instoffset < BIG {
   602  				return C_SAUTO
   603  			}
   604  			return C_LAUTO
   605  
   606  		case obj.NAME_PARAM:
   607  			if a.Reg == REGSP {
   608  				// unset base register for better printing, since
   609  				// a.Offset is still relative to pseudo-FP.
   610  				a.Reg = obj.REG_NONE
   611  			}
   612  			c.instoffset = int64(c.autosize) + a.Offset + c.ctxt.Arch.FixedFrameSize
   613  			if c.instoffset >= -BIG && c.instoffset < BIG {
   614  				return C_SAUTO
   615  			}
   616  			return C_LAUTO
   617  
   618  		case obj.NAME_NONE:
   619  			c.instoffset = a.Offset
   620  			if c.instoffset == 0 {
   621  				return C_ZOREG
   622  			}
   623  			if c.instoffset >= -BIG && c.instoffset < BIG {
   624  				return C_SOREG
   625  			}
   626  			return C_LOREG
   627  		}
   628  
   629  		return C_GOK
   630  
   631  	case obj.TYPE_TEXTSIZE:
   632  		return C_TEXTSIZE
   633  
   634  	case obj.TYPE_FCONST:
   635  		if f64, ok := a.Val.(float64); ok && math.Float64bits(f64) == 0 {
   636  			return C_ZCON
   637  		}
   638  		c.ctxt.Diag("cannot handle the floating point constant %v", a.Val)
   639  
   640  	case obj.TYPE_CONST,
   641  		obj.TYPE_ADDR:
   642  		switch a.Name {
   643  		case obj.NAME_NONE:
   644  			c.instoffset = a.Offset
   645  			if a.Reg != 0 {
   646  				if -BIG <= c.instoffset && c.instoffset <= BIG {
   647  					return C_SACON
   648  				}
   649  				if isint32(c.instoffset) {
   650  					return C_LACON
   651  				}
   652  				return C_DACON
   653  			}
   654  
   655  		case obj.NAME_EXTERN,
   656  			obj.NAME_STATIC:
   657  			s := a.Sym
   658  			if s == nil {
   659  				return C_GOK
   660  			}
   661  			c.instoffset = a.Offset
   662  
   663  			return C_SYMADDR
   664  
   665  		case obj.NAME_AUTO:
   666  			if a.Reg == REGSP {
   667  				// unset base register for better printing, since
   668  				// a.Offset is still relative to pseudo-SP.
   669  				a.Reg = obj.REG_NONE
   670  			}
   671  			c.instoffset = int64(c.autosize) + a.Offset
   672  			if c.instoffset >= -BIG && c.instoffset < BIG {
   673  				return C_SACON
   674  			}
   675  			return C_LACON
   676  
   677  		case obj.NAME_PARAM:
   678  			if a.Reg == REGSP {
   679  				// unset base register for better printing, since
   680  				// a.Offset is still relative to pseudo-FP.
   681  				a.Reg = obj.REG_NONE
   682  			}
   683  			c.instoffset = int64(c.autosize) + a.Offset + c.ctxt.Arch.FixedFrameSize
   684  			if c.instoffset >= -BIG && c.instoffset < BIG {
   685  				return C_SACON
   686  			}
   687  			return C_LACON
   688  
   689  		default:
   690  			return C_GOK
   691  		}
   692  
   693  		if c.instoffset == 0 {
   694  			return C_ZCON
   695  		}
   696  		if c.instoffset >= 0 {
   697  			if c.instoffset <= 0x7fff {
   698  				return C_SCON
   699  			}
   700  			if c.instoffset <= 0xffff {
   701  				return C_ANDCON
   702  			}
   703  			if c.instoffset&0xffff == 0 && isuint32(uint64(c.instoffset)) { /* && ((instoffset & (1<<31)) == 0) */
   704  				return C_UCON
   705  			}
   706  			if isint32(c.instoffset) || isuint32(uint64(c.instoffset)) {
   707  				return C_LCON
   708  			}
   709  			return C_DCON
   710  		}
   711  
   712  		if c.instoffset >= -0x8000 {
   713  			return C_ADDCON
   714  		}
   715  		if c.instoffset&0xffff == 0 && isint32(c.instoffset) {
   716  			return C_UCON
   717  		}
   718  		if isint32(c.instoffset) {
   719  			return C_LCON
   720  		}
   721  		return C_DCON
   722  
   723  	case obj.TYPE_BRANCH:
   724  		return C_SBRA
   725  	}
   726  
   727  	return C_GOK
   728  }
   729  
   730  func (c *ctxtz) oplook(p *obj.Prog) *Optab {
   731  	// Return cached optab entry if available.
   732  	if p.Optab != 0 {
   733  		return &optab[p.Optab-1]
   734  	}
   735  	if len(p.RestArgs) > 3 {
   736  		c.ctxt.Diag("too many RestArgs: got %v, maximum is 3\n", len(p.RestArgs))
   737  		return nil
   738  	}
   739  
   740  	// Initialize classes for all arguments.
   741  	p.From.Class = int8(c.aclass(&p.From) + 1)
   742  	p.To.Class = int8(c.aclass(&p.To) + 1)
   743  	for i := range p.RestArgs {
   744  		p.RestArgs[i].Addr.Class = int8(c.aclass(&p.RestArgs[i].Addr) + 1)
   745  	}
   746  
   747  	// Mirrors the argument list in Optab.
   748  	args := [...]int8{
   749  		p.From.Class - 1,
   750  		C_NONE, // p.Reg
   751  		C_NONE, // p.RestArgs[0]
   752  		C_NONE, // p.RestArgs[1]
   753  		C_NONE, // p.RestArgs[2]
   754  		p.To.Class - 1,
   755  	}
   756  	// Fill in argument class for p.Reg.
   757  	switch {
   758  	case REG_R0 <= p.Reg && p.Reg <= REG_R15:
   759  		args[1] = C_REG
   760  	case REG_V0 <= p.Reg && p.Reg <= REG_V31:
   761  		args[1] = C_VREG
   762  	case REG_F0 <= p.Reg && p.Reg <= REG_F15:
   763  		args[1] = C_FREG
   764  	case REG_AR0 <= p.Reg && p.Reg <= REG_AR15:
   765  		args[1] = C_AREG
   766  	}
   767  	// Fill in argument classes for p.RestArgs.
   768  	for i, a := range p.RestArgs {
   769  		args[2+i] = a.Class - 1
   770  	}
   771  
   772  	// Lookup op in optab.
   773  	ops := oprange[p.As&obj.AMask]
   774  	cmp := [len(args)]*[C_NCLASS]bool{}
   775  	for i := range cmp {
   776  		cmp[i] = &xcmp[args[i]]
   777  	}
   778  	for i := range ops {
   779  		op := &ops[i]
   780  		if cmp[0][op.a1] && cmp[1][op.a2] &&
   781  			cmp[2][op.a3] && cmp[3][op.a4] &&
   782  			cmp[4][op.a5] && cmp[5][op.a6] {
   783  			p.Optab = uint16(cap(optab) - cap(ops) + i + 1)
   784  			return op
   785  		}
   786  	}
   787  
   788  	// Cannot find a case; abort.
   789  	s := ""
   790  	for _, a := range args {
   791  		s += fmt.Sprintf(" %v", DRconv(int(a)))
   792  	}
   793  	c.ctxt.Diag("illegal combination %v%v\n", p.As, s)
   794  	c.ctxt.Diag("prog: %v\n", p)
   795  	return nil
   796  }
   797  
   798  func cmp(a int, b int) bool {
   799  	if a == b {
   800  		return true
   801  	}
   802  	switch a {
   803  	case C_DCON:
   804  		if b == C_LCON {
   805  			return true
   806  		}
   807  		fallthrough
   808  	case C_LCON:
   809  		if b == C_ZCON || b == C_SCON || b == C_UCON || b == C_ADDCON || b == C_ANDCON {
   810  			return true
   811  		}
   812  
   813  	case C_ADDCON:
   814  		if b == C_ZCON || b == C_SCON {
   815  			return true
   816  		}
   817  
   818  	case C_ANDCON:
   819  		if b == C_ZCON || b == C_SCON {
   820  			return true
   821  		}
   822  
   823  	case C_UCON:
   824  		if b == C_ZCON || b == C_SCON {
   825  			return true
   826  		}
   827  
   828  	case C_SCON:
   829  		if b == C_ZCON {
   830  			return true
   831  		}
   832  
   833  	case C_LACON:
   834  		if b == C_SACON {
   835  			return true
   836  		}
   837  
   838  	case C_LBRA:
   839  		if b == C_SBRA {
   840  			return true
   841  		}
   842  
   843  	case C_LAUTO:
   844  		if b == C_SAUTO {
   845  			return true
   846  		}
   847  
   848  	case C_LOREG:
   849  		if b == C_ZOREG || b == C_SOREG {
   850  			return true
   851  		}
   852  
   853  	case C_SOREG:
   854  		if b == C_ZOREG {
   855  			return true
   856  		}
   857  
   858  	case C_ANY:
   859  		return true
   860  	}
   861  
   862  	return false
   863  }
   864  
   865  func ocmp(p1, p2 Optab) int {
   866  	if p1.as != p2.as {
   867  		return int(p1.as) - int(p2.as)
   868  	}
   869  	if p1.a1 != p2.a1 {
   870  		return int(p1.a1) - int(p2.a1)
   871  	}
   872  	if p1.a2 != p2.a2 {
   873  		return int(p1.a2) - int(p2.a2)
   874  	}
   875  	if p1.a3 != p2.a3 {
   876  		return int(p1.a3) - int(p2.a3)
   877  	}
   878  	if p1.a4 != p2.a4 {
   879  		return int(p1.a4) - int(p2.a4)
   880  	}
   881  	return 0
   882  }
   883  func opset(a, b obj.As) {
   884  	oprange[a&obj.AMask] = oprange[b&obj.AMask]
   885  }
   886  
   887  func buildop(ctxt *obj.Link) {
   888  	if oprange[AORW&obj.AMask] != nil {
   889  		// Already initialized; stop now.
   890  		// This happens in the cmd/asm tests,
   891  		// each of which re-initializes the arch.
   892  		return
   893  	}
   894  
   895  	for i := 0; i < C_NCLASS; i++ {
   896  		for n := 0; n < C_NCLASS; n++ {
   897  			if cmp(n, i) {
   898  				xcmp[i][n] = true
   899  			}
   900  		}
   901  	}
   902  	slices.SortFunc(optab, ocmp)
   903  	for i := 0; i < len(optab); i++ {
   904  		r := optab[i].as
   905  		start := i
   906  		for ; i+1 < len(optab); i++ {
   907  			if optab[i+1].as != r {
   908  				break
   909  			}
   910  		}
   911  		oprange[r&obj.AMask] = optab[start : i+1]
   912  
   913  		// opset() aliases optab ranges for similar instructions, to reduce the number of optabs in the array.
   914  		// oprange[] is used by oplook() to find the Optab entry that applies to a given Prog.
   915  		switch r {
   916  		case AADD:
   917  			opset(AADDC, r)
   918  			opset(AADDW, r)
   919  			opset(AADDE, r)
   920  			opset(AMULLD, r)
   921  			opset(AMULLW, r)
   922  		case ADIVW:
   923  			opset(ADIVD, r)
   924  			opset(ADIVDU, r)
   925  			opset(ADIVWU, r)
   926  			opset(AMODD, r)
   927  			opset(AMODDU, r)
   928  			opset(AMODW, r)
   929  			opset(AMODWU, r)
   930  		case AMULHD:
   931  			opset(AMULHDU, r)
   932  		case AMOVBZ:
   933  			opset(AMOVH, r)
   934  			opset(AMOVHZ, r)
   935  		case ALA:
   936  			opset(ALAY, r)
   937  		case AMVC:
   938  			opset(AMVCIN, r)
   939  			opset(ACLC, r)
   940  			opset(AXC, r)
   941  			opset(AOC, r)
   942  			opset(ANC, r)
   943  		case ASTCK:
   944  			opset(ASTCKC, r)
   945  			opset(ASTCKE, r)
   946  			opset(ASTCKF, r)
   947  		case ALAAG:
   948  			opset(ALAA, r)
   949  			opset(ALAAL, r)
   950  			opset(ALAALG, r)
   951  			opset(ALAN, r)
   952  			opset(ALANG, r)
   953  			opset(ALAX, r)
   954  			opset(ALAXG, r)
   955  			opset(ALAO, r)
   956  			opset(ALAOG, r)
   957  		case ASTMG:
   958  			opset(ASTMY, r)
   959  		case ALMG:
   960  			opset(ALMY, r)
   961  		case ABEQ:
   962  			opset(ABGE, r)
   963  			opset(ABGT, r)
   964  			opset(ABLE, r)
   965  			opset(ABLT, r)
   966  			opset(ABNE, r)
   967  			opset(ABVC, r)
   968  			opset(ABVS, r)
   969  			opset(ABLEU, r)
   970  			opset(ABLTU, r)
   971  		case ABR:
   972  			opset(ABL, r)
   973  		case ABC:
   974  			opset(ABCL, r)
   975  		case AFABS:
   976  			opset(AFNABS, r)
   977  			opset(ALPDFR, r)
   978  			opset(ALNDFR, r)
   979  			opset(AFNEG, r)
   980  			opset(AFNEGS, r)
   981  			opset(ALCDBR, r)
   982  			opset(ALEDBR, r)
   983  			opset(ALDEBR, r)
   984  			opset(AFSQRT, r)
   985  			opset(AFSQRTS, r)
   986  		case AFADD:
   987  			opset(AFADDS, r)
   988  			opset(AFDIV, r)
   989  			opset(AFDIVS, r)
   990  			opset(AFSUB, r)
   991  			opset(AFSUBS, r)
   992  		case AFMADD:
   993  			opset(AFMADDS, r)
   994  			opset(AFMSUB, r)
   995  			opset(AFMSUBS, r)
   996  		case AFMUL:
   997  			opset(AFMULS, r)
   998  		case AFCMPO:
   999  			opset(AFCMPU, r)
  1000  			opset(ACEBR, r)
  1001  		case AAND:
  1002  			opset(AOR, r)
  1003  			opset(AXOR, r)
  1004  		case AANDW:
  1005  			opset(AORW, r)
  1006  			opset(AXORW, r)
  1007  		case ASLD:
  1008  			opset(ASRD, r)
  1009  			opset(ASLW, r)
  1010  			opset(ASRW, r)
  1011  			opset(ASRAD, r)
  1012  			opset(ASRAW, r)
  1013  			opset(ARLL, r)
  1014  			opset(ARLLG, r)
  1015  		case ARNSBG:
  1016  			opset(ARXSBG, r)
  1017  			opset(AROSBG, r)
  1018  			opset(ARNSBGT, r)
  1019  			opset(ARXSBGT, r)
  1020  			opset(AROSBGT, r)
  1021  			opset(ARISBG, r)
  1022  			opset(ARISBGN, r)
  1023  			opset(ARISBGZ, r)
  1024  			opset(ARISBGNZ, r)
  1025  			opset(ARISBHG, r)
  1026  			opset(ARISBLG, r)
  1027  			opset(ARISBHGZ, r)
  1028  			opset(ARISBLGZ, r)
  1029  		case ACSG:
  1030  			opset(ACS, r)
  1031  		case ASUB:
  1032  			opset(ASUBC, r)
  1033  			opset(ASUBE, r)
  1034  			opset(ASUBW, r)
  1035  		case ANEG:
  1036  			opset(ANEGW, r)
  1037  		case AFMOVD:
  1038  			opset(AFMOVS, r)
  1039  		case AMOVDBR:
  1040  			opset(AMOVWBR, r)
  1041  		case ACMP:
  1042  			opset(ACMPW, r)
  1043  		case ACMPU:
  1044  			opset(ACMPWU, r)
  1045  		case ATMHH:
  1046  			opset(ATMHL, r)
  1047  			opset(ATMLH, r)
  1048  			opset(ATMLL, r)
  1049  		case ACEFBRA:
  1050  			opset(ACDFBRA, r)
  1051  			opset(ACEGBRA, r)
  1052  			opset(ACDGBRA, r)
  1053  			opset(ACELFBR, r)
  1054  			opset(ACDLFBR, r)
  1055  			opset(ACELGBR, r)
  1056  			opset(ACDLGBR, r)
  1057  		case ACFEBRA:
  1058  			opset(ACFDBRA, r)
  1059  			opset(ACGEBRA, r)
  1060  			opset(ACGDBRA, r)
  1061  			opset(ACLFEBR, r)
  1062  			opset(ACLFDBR, r)
  1063  			opset(ACLGEBR, r)
  1064  			opset(ACLGDBR, r)
  1065  		case AFIEBR:
  1066  			opset(AFIDBR, r)
  1067  		case ACMPBEQ:
  1068  			opset(ACMPBGE, r)
  1069  			opset(ACMPBGT, r)
  1070  			opset(ACMPBLE, r)
  1071  			opset(ACMPBLT, r)
  1072  			opset(ACMPBNE, r)
  1073  		case ACMPUBEQ:
  1074  			opset(ACMPUBGE, r)
  1075  			opset(ACMPUBGT, r)
  1076  			opset(ACMPUBLE, r)
  1077  			opset(ACMPUBLT, r)
  1078  			opset(ACMPUBNE, r)
  1079  		case ACGRJ:
  1080  			opset(ACRJ, r)
  1081  		case ACLGRJ:
  1082  			opset(ACLRJ, r)
  1083  		case ACGIJ:
  1084  			opset(ACIJ, r)
  1085  		case ACLGIJ:
  1086  			opset(ACLIJ, r)
  1087  		case AMOVDEQ:
  1088  			opset(AMOVDGE, r)
  1089  			opset(AMOVDGT, r)
  1090  			opset(AMOVDLE, r)
  1091  			opset(AMOVDLT, r)
  1092  			opset(AMOVDNE, r)
  1093  		case ALOCGR:
  1094  			opset(ALOCR, r)
  1095  		case ALTDBR:
  1096  			opset(ALTEBR, r)
  1097  		case ATCDB:
  1098  			opset(ATCEB, r)
  1099  		case AVL:
  1100  			opset(AVLLEZB, r)
  1101  			opset(AVLLEZH, r)
  1102  			opset(AVLLEZF, r)
  1103  			opset(AVLLEZG, r)
  1104  			opset(AVLREPB, r)
  1105  			opset(AVLREPH, r)
  1106  			opset(AVLREPF, r)
  1107  			opset(AVLREPG, r)
  1108  		case AVLEG:
  1109  			opset(AVLBB, r)
  1110  			opset(AVLEB, r)
  1111  			opset(AVLEH, r)
  1112  			opset(AVLEF, r)
  1113  			opset(AVLEG, r)
  1114  			opset(AVLREP, r)
  1115  		case AVSTEG:
  1116  			opset(AVSTEB, r)
  1117  			opset(AVSTEH, r)
  1118  			opset(AVSTEF, r)
  1119  		case AVSCEG:
  1120  			opset(AVSCEF, r)
  1121  		case AVGEG:
  1122  			opset(AVGEF, r)
  1123  		case AVESLG:
  1124  			opset(AVESLB, r)
  1125  			opset(AVESLH, r)
  1126  			opset(AVESLF, r)
  1127  			opset(AVERLLB, r)
  1128  			opset(AVERLLH, r)
  1129  			opset(AVERLLF, r)
  1130  			opset(AVERLLG, r)
  1131  			opset(AVESRAB, r)
  1132  			opset(AVESRAH, r)
  1133  			opset(AVESRAF, r)
  1134  			opset(AVESRAG, r)
  1135  			opset(AVESRLB, r)
  1136  			opset(AVESRLH, r)
  1137  			opset(AVESRLF, r)
  1138  			opset(AVESRLG, r)
  1139  		case AVLGVG:
  1140  			opset(AVLGVB, r)
  1141  			opset(AVLGVH, r)
  1142  			opset(AVLGVF, r)
  1143  		case AVLVGG:
  1144  			opset(AVLVGB, r)
  1145  			opset(AVLVGH, r)
  1146  			opset(AVLVGF, r)
  1147  		case AVZERO:
  1148  			opset(AVONE, r)
  1149  		case AVREPIG:
  1150  			opset(AVREPIB, r)
  1151  			opset(AVREPIH, r)
  1152  			opset(AVREPIF, r)
  1153  		case AVLEIG:
  1154  			opset(AVLEIB, r)
  1155  			opset(AVLEIH, r)
  1156  			opset(AVLEIF, r)
  1157  		case AVGMG:
  1158  			opset(AVGMB, r)
  1159  			opset(AVGMH, r)
  1160  			opset(AVGMF, r)
  1161  		case AVREPG:
  1162  			opset(AVREPB, r)
  1163  			opset(AVREPH, r)
  1164  			opset(AVREPF, r)
  1165  		case AVERIMG:
  1166  			opset(AVERIMB, r)
  1167  			opset(AVERIMH, r)
  1168  			opset(AVERIMF, r)
  1169  		case AVFTCIDB:
  1170  			opset(AWFTCIDB, r)
  1171  		case AVLR:
  1172  			opset(AVUPHB, r)
  1173  			opset(AVUPHH, r)
  1174  			opset(AVUPHF, r)
  1175  			opset(AVUPLHB, r)
  1176  			opset(AVUPLHH, r)
  1177  			opset(AVUPLHF, r)
  1178  			opset(AVUPLB, r)
  1179  			opset(AVUPLHW, r)
  1180  			opset(AVUPLF, r)
  1181  			opset(AVUPLLB, r)
  1182  			opset(AVUPLLH, r)
  1183  			opset(AVUPLLF, r)
  1184  			opset(AVCLZB, r)
  1185  			opset(AVCLZH, r)
  1186  			opset(AVCLZF, r)
  1187  			opset(AVCLZG, r)
  1188  			opset(AVCTZB, r)
  1189  			opset(AVCTZH, r)
  1190  			opset(AVCTZF, r)
  1191  			opset(AVCTZG, r)
  1192  			opset(AVLDEB, r)
  1193  			opset(AWLDEB, r)
  1194  			opset(AVFLCDB, r)
  1195  			opset(AWFLCDB, r)
  1196  			opset(AVFLNDB, r)
  1197  			opset(AWFLNDB, r)
  1198  			opset(AVFLPDB, r)
  1199  			opset(AWFLPDB, r)
  1200  			opset(AVFSQDB, r)
  1201  			opset(AWFSQDB, r)
  1202  			opset(AVISTRB, r)
  1203  			opset(AVISTRH, r)
  1204  			opset(AVISTRF, r)
  1205  			opset(AVISTRBS, r)
  1206  			opset(AVISTRHS, r)
  1207  			opset(AVISTRFS, r)
  1208  			opset(AVLCB, r)
  1209  			opset(AVLCH, r)
  1210  			opset(AVLCF, r)
  1211  			opset(AVLCG, r)
  1212  			opset(AVLPB, r)
  1213  			opset(AVLPH, r)
  1214  			opset(AVLPF, r)
  1215  			opset(AVLPG, r)
  1216  			opset(AVPOPCT, r)
  1217  			opset(AVSEGB, r)
  1218  			opset(AVSEGH, r)
  1219  			opset(AVSEGF, r)
  1220  		case AVECG:
  1221  			opset(AVECB, r)
  1222  			opset(AVECH, r)
  1223  			opset(AVECF, r)
  1224  			opset(AVECLB, r)
  1225  			opset(AVECLH, r)
  1226  			opset(AVECLF, r)
  1227  			opset(AVECLG, r)
  1228  			opset(AWFCDB, r)
  1229  			opset(AWFKDB, r)
  1230  		case AVCEQG:
  1231  			opset(AVCEQB, r)
  1232  			opset(AVCEQH, r)
  1233  			opset(AVCEQF, r)
  1234  			opset(AVCEQBS, r)
  1235  			opset(AVCEQHS, r)
  1236  			opset(AVCEQFS, r)
  1237  			opset(AVCEQGS, r)
  1238  			opset(AVCHB, r)
  1239  			opset(AVCHH, r)
  1240  			opset(AVCHF, r)
  1241  			opset(AVCHG, r)
  1242  			opset(AVCHBS, r)
  1243  			opset(AVCHHS, r)
  1244  			opset(AVCHFS, r)
  1245  			opset(AVCHGS, r)
  1246  			opset(AVCHLB, r)
  1247  			opset(AVCHLH, r)
  1248  			opset(AVCHLF, r)
  1249  			opset(AVCHLG, r)
  1250  			opset(AVCHLBS, r)
  1251  			opset(AVCHLHS, r)
  1252  			opset(AVCHLFS, r)
  1253  			opset(AVCHLGS, r)
  1254  		case AVFAEF:
  1255  			opset(AVFAEB, r)
  1256  			opset(AVFAEH, r)
  1257  			opset(AVFAEBS, r)
  1258  			opset(AVFAEHS, r)
  1259  			opset(AVFAEFS, r)
  1260  			opset(AVFAEZB, r)
  1261  			opset(AVFAEZH, r)
  1262  			opset(AVFAEZF, r)
  1263  			opset(AVFAEZBS, r)
  1264  			opset(AVFAEZHS, r)
  1265  			opset(AVFAEZFS, r)
  1266  			opset(AVFEEB, r)
  1267  			opset(AVFEEH, r)
  1268  			opset(AVFEEF, r)
  1269  			opset(AVFEEBS, r)
  1270  			opset(AVFEEHS, r)
  1271  			opset(AVFEEFS, r)
  1272  			opset(AVFEEZB, r)
  1273  			opset(AVFEEZH, r)
  1274  			opset(AVFEEZF, r)
  1275  			opset(AVFEEZBS, r)
  1276  			opset(AVFEEZHS, r)
  1277  			opset(AVFEEZFS, r)
  1278  			opset(AVFENEB, r)
  1279  			opset(AVFENEH, r)
  1280  			opset(AVFENEF, r)
  1281  			opset(AVFENEBS, r)
  1282  			opset(AVFENEHS, r)
  1283  			opset(AVFENEFS, r)
  1284  			opset(AVFENEZB, r)
  1285  			opset(AVFENEZH, r)
  1286  			opset(AVFENEZF, r)
  1287  			opset(AVFENEZBS, r)
  1288  			opset(AVFENEZHS, r)
  1289  			opset(AVFENEZFS, r)
  1290  		case AVPKSG:
  1291  			opset(AVPKSH, r)
  1292  			opset(AVPKSF, r)
  1293  			opset(AVPKSHS, r)
  1294  			opset(AVPKSFS, r)
  1295  			opset(AVPKSGS, r)
  1296  			opset(AVPKLSH, r)
  1297  			opset(AVPKLSF, r)
  1298  			opset(AVPKLSG, r)
  1299  			opset(AVPKLSHS, r)
  1300  			opset(AVPKLSFS, r)
  1301  			opset(AVPKLSGS, r)
  1302  		case AVAQ:
  1303  			opset(AVAB, r)
  1304  			opset(AVAH, r)
  1305  			opset(AVAF, r)
  1306  			opset(AVAG, r)
  1307  			opset(AVACCB, r)
  1308  			opset(AVACCH, r)
  1309  			opset(AVACCF, r)
  1310  			opset(AVACCG, r)
  1311  			opset(AVACCQ, r)
  1312  			opset(AVN, r)
  1313  			opset(AVNC, r)
  1314  			opset(AVAVGB, r)
  1315  			opset(AVAVGH, r)
  1316  			opset(AVAVGF, r)
  1317  			opset(AVAVGG, r)
  1318  			opset(AVAVGLB, r)
  1319  			opset(AVAVGLH, r)
  1320  			opset(AVAVGLF, r)
  1321  			opset(AVAVGLG, r)
  1322  			opset(AVCKSM, r)
  1323  			opset(AVX, r)
  1324  			opset(AVFADB, r)
  1325  			opset(AWFADB, r)
  1326  			opset(AVFCEDB, r)
  1327  			opset(AVFCEDBS, r)
  1328  			opset(AWFCEDB, r)
  1329  			opset(AWFCEDBS, r)
  1330  			opset(AVFCHDB, r)
  1331  			opset(AVFCHDBS, r)
  1332  			opset(AWFCHDB, r)
  1333  			opset(AWFCHDBS, r)
  1334  			opset(AVFCHEDB, r)
  1335  			opset(AVFCHEDBS, r)
  1336  			opset(AWFCHEDB, r)
  1337  			opset(AWFCHEDBS, r)
  1338  			opset(AVFMDB, r)
  1339  			opset(AWFMDB, r)
  1340  			opset(AVGFMB, r)
  1341  			opset(AVGFMH, r)
  1342  			opset(AVGFMF, r)
  1343  			opset(AVGFMG, r)
  1344  			opset(AVMXB, r)
  1345  			opset(AVMXH, r)
  1346  			opset(AVMXF, r)
  1347  			opset(AVMXG, r)
  1348  			opset(AVMXLB, r)
  1349  			opset(AVMXLH, r)
  1350  			opset(AVMXLF, r)
  1351  			opset(AVMXLG, r)
  1352  			opset(AVMNB, r)
  1353  			opset(AVMNH, r)
  1354  			opset(AVMNF, r)
  1355  			opset(AVMNG, r)
  1356  			opset(AVMNLB, r)
  1357  			opset(AVMNLH, r)
  1358  			opset(AVMNLF, r)
  1359  			opset(AVMNLG, r)
  1360  			opset(AVMRHB, r)
  1361  			opset(AVMRHH, r)
  1362  			opset(AVMRHF, r)
  1363  			opset(AVMRHG, r)
  1364  			opset(AVMRLB, r)
  1365  			opset(AVMRLH, r)
  1366  			opset(AVMRLF, r)
  1367  			opset(AVMRLG, r)
  1368  			opset(AVMEB, r)
  1369  			opset(AVMEH, r)
  1370  			opset(AVMEF, r)
  1371  			opset(AVMLEB, r)
  1372  			opset(AVMLEH, r)
  1373  			opset(AVMLEF, r)
  1374  			opset(AVMOB, r)
  1375  			opset(AVMOH, r)
  1376  			opset(AVMOF, r)
  1377  			opset(AVMLOB, r)
  1378  			opset(AVMLOH, r)
  1379  			opset(AVMLOF, r)
  1380  			opset(AVMHB, r)
  1381  			opset(AVMHH, r)
  1382  			opset(AVMHF, r)
  1383  			opset(AVMLHB, r)
  1384  			opset(AVMLHH, r)
  1385  			opset(AVMLHF, r)
  1386  			opset(AVMLH, r)
  1387  			opset(AVMLHW, r)
  1388  			opset(AVMLF, r)
  1389  			opset(AVNO, r)
  1390  			opset(AVO, r)
  1391  			opset(AVPKH, r)
  1392  			opset(AVPKF, r)
  1393  			opset(AVPKG, r)
  1394  			opset(AVSUMGH, r)
  1395  			opset(AVSUMGF, r)
  1396  			opset(AVSUMQF, r)
  1397  			opset(AVSUMQG, r)
  1398  			opset(AVSUMB, r)
  1399  			opset(AVSUMH, r)
  1400  		case AVERLLVG:
  1401  			opset(AVERLLVB, r)
  1402  			opset(AVERLLVH, r)
  1403  			opset(AVERLLVF, r)
  1404  			opset(AVESLVB, r)
  1405  			opset(AVESLVH, r)
  1406  			opset(AVESLVF, r)
  1407  			opset(AVESLVG, r)
  1408  			opset(AVESRAVB, r)
  1409  			opset(AVESRAVH, r)
  1410  			opset(AVESRAVF, r)
  1411  			opset(AVESRAVG, r)
  1412  			opset(AVESRLVB, r)
  1413  			opset(AVESRLVH, r)
  1414  			opset(AVESRLVF, r)
  1415  			opset(AVESRLVG, r)
  1416  			opset(AVFDDB, r)
  1417  			opset(AWFDDB, r)
  1418  			opset(AVFSDB, r)
  1419  			opset(AWFSDB, r)
  1420  			opset(AVSL, r)
  1421  			opset(AVSLB, r)
  1422  			opset(AVSRA, r)
  1423  			opset(AVSRAB, r)
  1424  			opset(AVSRL, r)
  1425  			opset(AVSRLB, r)
  1426  			opset(AVSB, r)
  1427  			opset(AVSH, r)
  1428  			opset(AVSF, r)
  1429  			opset(AVSG, r)
  1430  			opset(AVSQ, r)
  1431  			opset(AVSCBIB, r)
  1432  			opset(AVSCBIH, r)
  1433  			opset(AVSCBIF, r)
  1434  			opset(AVSCBIG, r)
  1435  			opset(AVSCBIQ, r)
  1436  		case AVACQ:
  1437  			opset(AVACCCQ, r)
  1438  			opset(AVGFMAB, r)
  1439  			opset(AVGFMAH, r)
  1440  			opset(AVGFMAF, r)
  1441  			opset(AVGFMAG, r)
  1442  			opset(AVMALB, r)
  1443  			opset(AVMALHW, r)
  1444  			opset(AVMALF, r)
  1445  			opset(AVMAHB, r)
  1446  			opset(AVMAHH, r)
  1447  			opset(AVMAHF, r)
  1448  			opset(AVMALHB, r)
  1449  			opset(AVMALHH, r)
  1450  			opset(AVMALHF, r)
  1451  			opset(AVMAEB, r)
  1452  			opset(AVMAEH, r)
  1453  			opset(AVMAEF, r)
  1454  			opset(AVMALEB, r)
  1455  			opset(AVMALEH, r)
  1456  			opset(AVMALEF, r)
  1457  			opset(AVMAOB, r)
  1458  			opset(AVMAOH, r)
  1459  			opset(AVMAOF, r)
  1460  			opset(AVMALOB, r)
  1461  			opset(AVMALOH, r)
  1462  			opset(AVMALOF, r)
  1463  			opset(AVSTRC, r)
  1464  			opset(AVSTRCB, r)
  1465  			opset(AVSTRCH, r)
  1466  			opset(AVSTRCF, r)
  1467  			opset(AVSTRCBS, r)
  1468  			opset(AVSTRCHS, r)
  1469  			opset(AVSTRCFS, r)
  1470  			opset(AVSTRCZB, r)
  1471  			opset(AVSTRCZH, r)
  1472  			opset(AVSTRCZF, r)
  1473  			opset(AVSTRCZBS, r)
  1474  			opset(AVSTRCZHS, r)
  1475  			opset(AVSTRCZFS, r)
  1476  			opset(AVSBCBIQ, r)
  1477  			opset(AVSBIQ, r)
  1478  			opset(AVMSLG, r)
  1479  			opset(AVMSLEG, r)
  1480  			opset(AVMSLOG, r)
  1481  			opset(AVMSLEOG, r)
  1482  		case AVSEL:
  1483  			opset(AVFMADB, r)
  1484  			opset(AWFMADB, r)
  1485  			opset(AVFMSDB, r)
  1486  			opset(AWFMSDB, r)
  1487  			opset(AVPERM, r)
  1488  		case AVFMAXDB:
  1489  			opset(AVFMAXSB, r)
  1490  			opset(AVFMINDB, r)
  1491  			opset(AVFMINSB, r)
  1492  		case AWFMAXDB:
  1493  			opset(AWFMAXSB, r)
  1494  			opset(AWFMINDB, r)
  1495  			opset(AWFMINSB, r)
  1496  		case AKM:
  1497  			opset(AKMC, r)
  1498  			opset(AKLMD, r)
  1499  			opset(AKIMD, r)
  1500  		case AKMA:
  1501  			opset(AKMCTR, r)
  1502  		}
  1503  	}
  1504  }
  1505  
  1506  const (
  1507  	op_A       uint32 = 0x5A00 // FORMAT_RX1        ADD (32)
  1508  	op_AD      uint32 = 0x6A00 // FORMAT_RX1        ADD NORMALIZED (long HFP)
  1509  	op_ADB     uint32 = 0xED1A // FORMAT_RXE        ADD (long BFP)
  1510  	op_ADBR    uint32 = 0xB31A // FORMAT_RRE        ADD (long BFP)
  1511  	op_ADR     uint32 = 0x2A00 // FORMAT_RR         ADD NORMALIZED (long HFP)
  1512  	op_ADTR    uint32 = 0xB3D2 // FORMAT_RRF1       ADD (long DFP)
  1513  	op_ADTRA   uint32 = 0xB3D2 // FORMAT_RRF1       ADD (long DFP)
  1514  	op_AE      uint32 = 0x7A00 // FORMAT_RX1        ADD NORMALIZED (short HFP)
  1515  	op_AEB     uint32 = 0xED0A // FORMAT_RXE        ADD (short BFP)
  1516  	op_AEBR    uint32 = 0xB30A // FORMAT_RRE        ADD (short BFP)
  1517  	op_AER     uint32 = 0x3A00 // FORMAT_RR         ADD NORMALIZED (short HFP)
  1518  	op_AFI     uint32 = 0xC209 // FORMAT_RIL1       ADD IMMEDIATE (32)
  1519  	op_AG      uint32 = 0xE308 // FORMAT_RXY1       ADD (64)
  1520  	op_AGF     uint32 = 0xE318 // FORMAT_RXY1       ADD (64<-32)
  1521  	op_AGFI    uint32 = 0xC208 // FORMAT_RIL1       ADD IMMEDIATE (64<-32)
  1522  	op_AGFR    uint32 = 0xB918 // FORMAT_RRE        ADD (64<-32)
  1523  	op_AGHI    uint32 = 0xA70B // FORMAT_RI1        ADD HALFWORD IMMEDIATE (64)
  1524  	op_AGHIK   uint32 = 0xECD9 // FORMAT_RIE4       ADD IMMEDIATE (64<-16)
  1525  	op_AGR     uint32 = 0xB908 // FORMAT_RRE        ADD (64)
  1526  	op_AGRK    uint32 = 0xB9E8 // FORMAT_RRF1       ADD (64)
  1527  	op_AGSI    uint32 = 0xEB7A // FORMAT_SIY        ADD IMMEDIATE (64<-8)
  1528  	op_AH      uint32 = 0x4A00 // FORMAT_RX1        ADD HALFWORD
  1529  	op_AHHHR   uint32 = 0xB9C8 // FORMAT_RRF1       ADD HIGH (32)
  1530  	op_AHHLR   uint32 = 0xB9D8 // FORMAT_RRF1       ADD HIGH (32)
  1531  	op_AHI     uint32 = 0xA70A // FORMAT_RI1        ADD HALFWORD IMMEDIATE (32)
  1532  	op_AHIK    uint32 = 0xECD8 // FORMAT_RIE4       ADD IMMEDIATE (32<-16)
  1533  	op_AHY     uint32 = 0xE37A // FORMAT_RXY1       ADD HALFWORD
  1534  	op_AIH     uint32 = 0xCC08 // FORMAT_RIL1       ADD IMMEDIATE HIGH (32)
  1535  	op_AL      uint32 = 0x5E00 // FORMAT_RX1        ADD LOGICAL (32)
  1536  	op_ALC     uint32 = 0xE398 // FORMAT_RXY1       ADD LOGICAL WITH CARRY (32)
  1537  	op_ALCG    uint32 = 0xE388 // FORMAT_RXY1       ADD LOGICAL WITH CARRY (64)
  1538  	op_ALCGR   uint32 = 0xB988 // FORMAT_RRE        ADD LOGICAL WITH CARRY (64)
  1539  	op_ALCR    uint32 = 0xB998 // FORMAT_RRE        ADD LOGICAL WITH CARRY (32)
  1540  	op_ALFI    uint32 = 0xC20B // FORMAT_RIL1       ADD LOGICAL IMMEDIATE (32)
  1541  	op_ALG     uint32 = 0xE30A // FORMAT_RXY1       ADD LOGICAL (64)
  1542  	op_ALGF    uint32 = 0xE31A // FORMAT_RXY1       ADD LOGICAL (64<-32)
  1543  	op_ALGFI   uint32 = 0xC20A // FORMAT_RIL1       ADD LOGICAL IMMEDIATE (64<-32)
  1544  	op_ALGFR   uint32 = 0xB91A // FORMAT_RRE        ADD LOGICAL (64<-32)
  1545  	op_ALGHSIK uint32 = 0xECDB // FORMAT_RIE4       ADD LOGICAL WITH SIGNED IMMEDIATE (64<-16)
  1546  	op_ALGR    uint32 = 0xB90A // FORMAT_RRE        ADD LOGICAL (64)
  1547  	op_ALGRK   uint32 = 0xB9EA // FORMAT_RRF1       ADD LOGICAL (64)
  1548  	op_ALGSI   uint32 = 0xEB7E // FORMAT_SIY        ADD LOGICAL WITH SIGNED IMMEDIATE (64<-8)
  1549  	op_ALHHHR  uint32 = 0xB9CA // FORMAT_RRF1       ADD LOGICAL HIGH (32)
  1550  	op_ALHHLR  uint32 = 0xB9DA // FORMAT_RRF1       ADD LOGICAL HIGH (32)
  1551  	op_ALHSIK  uint32 = 0xECDA // FORMAT_RIE4       ADD LOGICAL WITH SIGNED IMMEDIATE (32<-16)
  1552  	op_ALR     uint32 = 0x1E00 // FORMAT_RR         ADD LOGICAL (32)
  1553  	op_ALRK    uint32 = 0xB9FA // FORMAT_RRF1       ADD LOGICAL (32)
  1554  	op_ALSI    uint32 = 0xEB6E // FORMAT_SIY        ADD LOGICAL WITH SIGNED IMMEDIATE (32<-8)
  1555  	op_ALSIH   uint32 = 0xCC0A // FORMAT_RIL1       ADD LOGICAL WITH SIGNED IMMEDIATE HIGH (32)
  1556  	op_ALSIHN  uint32 = 0xCC0B // FORMAT_RIL1       ADD LOGICAL WITH SIGNED IMMEDIATE HIGH (32)
  1557  	op_ALY     uint32 = 0xE35E // FORMAT_RXY1       ADD LOGICAL (32)
  1558  	op_AP      uint32 = 0xFA00 // FORMAT_SS2        ADD DECIMAL
  1559  	op_AR      uint32 = 0x1A00 // FORMAT_RR         ADD (32)
  1560  	op_ARK     uint32 = 0xB9F8 // FORMAT_RRF1       ADD (32)
  1561  	op_ASI     uint32 = 0xEB6A // FORMAT_SIY        ADD IMMEDIATE (32<-8)
  1562  	op_AU      uint32 = 0x7E00 // FORMAT_RX1        ADD UNNORMALIZED (short HFP)
  1563  	op_AUR     uint32 = 0x3E00 // FORMAT_RR         ADD UNNORMALIZED (short HFP)
  1564  	op_AW      uint32 = 0x6E00 // FORMAT_RX1        ADD UNNORMALIZED (long HFP)
  1565  	op_AWR     uint32 = 0x2E00 // FORMAT_RR         ADD UNNORMALIZED (long HFP)
  1566  	op_AXBR    uint32 = 0xB34A // FORMAT_RRE        ADD (extended BFP)
  1567  	op_AXR     uint32 = 0x3600 // FORMAT_RR         ADD NORMALIZED (extended HFP)
  1568  	op_AXTR    uint32 = 0xB3DA // FORMAT_RRF1       ADD (extended DFP)
  1569  	op_AXTRA   uint32 = 0xB3DA // FORMAT_RRF1       ADD (extended DFP)
  1570  	op_AY      uint32 = 0xE35A // FORMAT_RXY1       ADD (32)
  1571  	op_BAKR    uint32 = 0xB240 // FORMAT_RRE        BRANCH AND STACK
  1572  	op_BAL     uint32 = 0x4500 // FORMAT_RX1        BRANCH AND LINK
  1573  	op_BALR    uint32 = 0x0500 // FORMAT_RR         BRANCH AND LINK
  1574  	op_BAS     uint32 = 0x4D00 // FORMAT_RX1        BRANCH AND SAVE
  1575  	op_BASR    uint32 = 0x0D00 // FORMAT_RR         BRANCH AND SAVE
  1576  	op_BASSM   uint32 = 0x0C00 // FORMAT_RR         BRANCH AND SAVE AND SET MODE
  1577  	op_BC      uint32 = 0x4700 // FORMAT_RX2        BRANCH ON CONDITION
  1578  	op_BCR     uint32 = 0x0700 // FORMAT_RR         BRANCH ON CONDITION
  1579  	op_BCT     uint32 = 0x4600 // FORMAT_RX1        BRANCH ON COUNT (32)
  1580  	op_BCTG    uint32 = 0xE346 // FORMAT_RXY1       BRANCH ON COUNT (64)
  1581  	op_BCTGR   uint32 = 0xB946 // FORMAT_RRE        BRANCH ON COUNT (64)
  1582  	op_BCTR    uint32 = 0x0600 // FORMAT_RR         BRANCH ON COUNT (32)
  1583  	op_BPP     uint32 = 0xC700 // FORMAT_SMI        BRANCH PREDICTION PRELOAD
  1584  	op_BPRP    uint32 = 0xC500 // FORMAT_MII        BRANCH PREDICTION RELATIVE PRELOAD
  1585  	op_BRAS    uint32 = 0xA705 // FORMAT_RI2        BRANCH RELATIVE AND SAVE
  1586  	op_BRASL   uint32 = 0xC005 // FORMAT_RIL2       BRANCH RELATIVE AND SAVE LONG
  1587  	op_BRC     uint32 = 0xA704 // FORMAT_RI3        BRANCH RELATIVE ON CONDITION
  1588  	op_BRCL    uint32 = 0xC004 // FORMAT_RIL3       BRANCH RELATIVE ON CONDITION LONG
  1589  	op_BRCT    uint32 = 0xA706 // FORMAT_RI2        BRANCH RELATIVE ON COUNT (32)
  1590  	op_BRCTG   uint32 = 0xA707 // FORMAT_RI2        BRANCH RELATIVE ON COUNT (64)
  1591  	op_BRCTH   uint32 = 0xCC06 // FORMAT_RIL2       BRANCH RELATIVE ON COUNT HIGH (32)
  1592  	op_BRXH    uint32 = 0x8400 // FORMAT_RSI        BRANCH RELATIVE ON INDEX HIGH (32)
  1593  	op_BRXHG   uint32 = 0xEC44 // FORMAT_RIE5       BRANCH RELATIVE ON INDEX HIGH (64)
  1594  	op_BRXLE   uint32 = 0x8500 // FORMAT_RSI        BRANCH RELATIVE ON INDEX LOW OR EQ. (32)
  1595  	op_BRXLG   uint32 = 0xEC45 // FORMAT_RIE5       BRANCH RELATIVE ON INDEX LOW OR EQ. (64)
  1596  	op_BSA     uint32 = 0xB25A // FORMAT_RRE        BRANCH AND SET AUTHORITY
  1597  	op_BSG     uint32 = 0xB258 // FORMAT_RRE        BRANCH IN SUBSPACE GROUP
  1598  	op_BSM     uint32 = 0x0B00 // FORMAT_RR         BRANCH AND SET MODE
  1599  	op_BXH     uint32 = 0x8600 // FORMAT_RS1        BRANCH ON INDEX HIGH (32)
  1600  	op_BXHG    uint32 = 0xEB44 // FORMAT_RSY1       BRANCH ON INDEX HIGH (64)
  1601  	op_BXLE    uint32 = 0x8700 // FORMAT_RS1        BRANCH ON INDEX LOW OR EQUAL (32)
  1602  	op_BXLEG   uint32 = 0xEB45 // FORMAT_RSY1       BRANCH ON INDEX LOW OR EQUAL (64)
  1603  	op_C       uint32 = 0x5900 // FORMAT_RX1        COMPARE (32)
  1604  	op_CD      uint32 = 0x6900 // FORMAT_RX1        COMPARE (long HFP)
  1605  	op_CDB     uint32 = 0xED19 // FORMAT_RXE        COMPARE (long BFP)
  1606  	op_CDBR    uint32 = 0xB319 // FORMAT_RRE        COMPARE (long BFP)
  1607  	op_CDFBR   uint32 = 0xB395 // FORMAT_RRE        CONVERT FROM FIXED (32 to long BFP)
  1608  	op_CDFBRA  uint32 = 0xB395 // FORMAT_RRF5       CONVERT FROM FIXED (32 to long BFP)
  1609  	op_CDFR    uint32 = 0xB3B5 // FORMAT_RRE        CONVERT FROM FIXED (32 to long HFP)
  1610  	op_CDFTR   uint32 = 0xB951 // FORMAT_RRE        CONVERT FROM FIXED (32 to long DFP)
  1611  	op_CDGBR   uint32 = 0xB3A5 // FORMAT_RRE        CONVERT FROM FIXED (64 to long BFP)
  1612  	op_CDGBRA  uint32 = 0xB3A5 // FORMAT_RRF5       CONVERT FROM FIXED (64 to long BFP)
  1613  	op_CDGR    uint32 = 0xB3C5 // FORMAT_RRE        CONVERT FROM FIXED (64 to long HFP)
  1614  	op_CDGTR   uint32 = 0xB3F1 // FORMAT_RRE        CONVERT FROM FIXED (64 to long DFP)
  1615  	op_CDGTRA  uint32 = 0xB3F1 // FORMAT_RRF5       CONVERT FROM FIXED (64 to long DFP)
  1616  	op_CDLFBR  uint32 = 0xB391 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to long BFP)
  1617  	op_CDLFTR  uint32 = 0xB953 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to long DFP)
  1618  	op_CDLGBR  uint32 = 0xB3A1 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to long BFP)
  1619  	op_CDLGTR  uint32 = 0xB952 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to long DFP)
  1620  	op_CDR     uint32 = 0x2900 // FORMAT_RR         COMPARE (long HFP)
  1621  	op_CDS     uint32 = 0xBB00 // FORMAT_RS1        COMPARE DOUBLE AND SWAP (32)
  1622  	op_CDSG    uint32 = 0xEB3E // FORMAT_RSY1       COMPARE DOUBLE AND SWAP (64)
  1623  	op_CDSTR   uint32 = 0xB3F3 // FORMAT_RRE        CONVERT FROM SIGNED PACKED (64 to long DFP)
  1624  	op_CDSY    uint32 = 0xEB31 // FORMAT_RSY1       COMPARE DOUBLE AND SWAP (32)
  1625  	op_CDTR    uint32 = 0xB3E4 // FORMAT_RRE        COMPARE (long DFP)
  1626  	op_CDUTR   uint32 = 0xB3F2 // FORMAT_RRE        CONVERT FROM UNSIGNED PACKED (64 to long DFP)
  1627  	op_CDZT    uint32 = 0xEDAA // FORMAT_RSL        CONVERT FROM ZONED (to long DFP)
  1628  	op_CE      uint32 = 0x7900 // FORMAT_RX1        COMPARE (short HFP)
  1629  	op_CEB     uint32 = 0xED09 // FORMAT_RXE        COMPARE (short BFP)
  1630  	op_CEBR    uint32 = 0xB309 // FORMAT_RRE        COMPARE (short BFP)
  1631  	op_CEDTR   uint32 = 0xB3F4 // FORMAT_RRE        COMPARE BIASED EXPONENT (long DFP)
  1632  	op_CEFBR   uint32 = 0xB394 // FORMAT_RRE        CONVERT FROM FIXED (32 to short BFP)
  1633  	op_CEFBRA  uint32 = 0xB394 // FORMAT_RRF5       CONVERT FROM FIXED (32 to short BFP)
  1634  	op_CEFR    uint32 = 0xB3B4 // FORMAT_RRE        CONVERT FROM FIXED (32 to short HFP)
  1635  	op_CEGBR   uint32 = 0xB3A4 // FORMAT_RRE        CONVERT FROM FIXED (64 to short BFP)
  1636  	op_CEGBRA  uint32 = 0xB3A4 // FORMAT_RRF5       CONVERT FROM FIXED (64 to short BFP)
  1637  	op_CEGR    uint32 = 0xB3C4 // FORMAT_RRE        CONVERT FROM FIXED (64 to short HFP)
  1638  	op_CELFBR  uint32 = 0xB390 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to short BFP)
  1639  	op_CELGBR  uint32 = 0xB3A0 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to short BFP)
  1640  	op_CER     uint32 = 0x3900 // FORMAT_RR         COMPARE (short HFP)
  1641  	op_CEXTR   uint32 = 0xB3FC // FORMAT_RRE        COMPARE BIASED EXPONENT (extended DFP)
  1642  	op_CFC     uint32 = 0xB21A // FORMAT_S          COMPARE AND FORM CODEWORD
  1643  	op_CFDBR   uint32 = 0xB399 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 32)
  1644  	op_CFDBRA  uint32 = 0xB399 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 32)
  1645  	op_CFDR    uint32 = 0xB3B9 // FORMAT_RRF5       CONVERT TO FIXED (long HFP to 32)
  1646  	op_CFDTR   uint32 = 0xB941 // FORMAT_RRF5       CONVERT TO FIXED (long DFP to 32)
  1647  	op_CFEBR   uint32 = 0xB398 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 32)
  1648  	op_CFEBRA  uint32 = 0xB398 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 32)
  1649  	op_CFER    uint32 = 0xB3B8 // FORMAT_RRF5       CONVERT TO FIXED (short HFP to 32)
  1650  	op_CFI     uint32 = 0xC20D // FORMAT_RIL1       COMPARE IMMEDIATE (32)
  1651  	op_CFXBR   uint32 = 0xB39A // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 32)
  1652  	op_CFXBRA  uint32 = 0xB39A // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 32)
  1653  	op_CFXR    uint32 = 0xB3BA // FORMAT_RRF5       CONVERT TO FIXED (extended HFP to 32)
  1654  	op_CFXTR   uint32 = 0xB949 // FORMAT_RRF5       CONVERT TO FIXED (extended DFP to 32)
  1655  	op_CG      uint32 = 0xE320 // FORMAT_RXY1       COMPARE (64)
  1656  	op_CGDBR   uint32 = 0xB3A9 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 64)
  1657  	op_CGDBRA  uint32 = 0xB3A9 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 64)
  1658  	op_CGDR    uint32 = 0xB3C9 // FORMAT_RRF5       CONVERT TO FIXED (long HFP to 64)
  1659  	op_CGDTR   uint32 = 0xB3E1 // FORMAT_RRF5       CONVERT TO FIXED (long DFP to 64)
  1660  	op_CGDTRA  uint32 = 0xB3E1 // FORMAT_RRF5       CONVERT TO FIXED (long DFP to 64)
  1661  	op_CGEBR   uint32 = 0xB3A8 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 64)
  1662  	op_CGEBRA  uint32 = 0xB3A8 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 64)
  1663  	op_CGER    uint32 = 0xB3C8 // FORMAT_RRF5       CONVERT TO FIXED (short HFP to 64)
  1664  	op_CGF     uint32 = 0xE330 // FORMAT_RXY1       COMPARE (64<-32)
  1665  	op_CGFI    uint32 = 0xC20C // FORMAT_RIL1       COMPARE IMMEDIATE (64<-32)
  1666  	op_CGFR    uint32 = 0xB930 // FORMAT_RRE        COMPARE (64<-32)
  1667  	op_CGFRL   uint32 = 0xC60C // FORMAT_RIL2       COMPARE RELATIVE LONG (64<-32)
  1668  	op_CGH     uint32 = 0xE334 // FORMAT_RXY1       COMPARE HALFWORD (64<-16)
  1669  	op_CGHI    uint32 = 0xA70F // FORMAT_RI1        COMPARE HALFWORD IMMEDIATE (64<-16)
  1670  	op_CGHRL   uint32 = 0xC604 // FORMAT_RIL2       COMPARE HALFWORD RELATIVE LONG (64<-16)
  1671  	op_CGHSI   uint32 = 0xE558 // FORMAT_SIL        COMPARE HALFWORD IMMEDIATE (64<-16)
  1672  	op_CGIB    uint32 = 0xECFC // FORMAT_RIS        COMPARE IMMEDIATE AND BRANCH (64<-8)
  1673  	op_CGIJ    uint32 = 0xEC7C // FORMAT_RIE3       COMPARE IMMEDIATE AND BRANCH RELATIVE (64<-8)
  1674  	op_CGIT    uint32 = 0xEC70 // FORMAT_RIE1       COMPARE IMMEDIATE AND TRAP (64<-16)
  1675  	op_CGR     uint32 = 0xB920 // FORMAT_RRE        COMPARE (64)
  1676  	op_CGRB    uint32 = 0xECE4 // FORMAT_RRS        COMPARE AND BRANCH (64)
  1677  	op_CGRJ    uint32 = 0xEC64 // FORMAT_RIE2       COMPARE AND BRANCH RELATIVE (64)
  1678  	op_CGRL    uint32 = 0xC608 // FORMAT_RIL2       COMPARE RELATIVE LONG (64)
  1679  	op_CGRT    uint32 = 0xB960 // FORMAT_RRF3       COMPARE AND TRAP (64)
  1680  	op_CGXBR   uint32 = 0xB3AA // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 64)
  1681  	op_CGXBRA  uint32 = 0xB3AA // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 64)
  1682  	op_CGXR    uint32 = 0xB3CA // FORMAT_RRF5       CONVERT TO FIXED (extended HFP to 64)
  1683  	op_CGXTR   uint32 = 0xB3E9 // FORMAT_RRF5       CONVERT TO FIXED (extended DFP to 64)
  1684  	op_CGXTRA  uint32 = 0xB3E9 // FORMAT_RRF5       CONVERT TO FIXED (extended DFP to 64)
  1685  	op_CH      uint32 = 0x4900 // FORMAT_RX1        COMPARE HALFWORD (32<-16)
  1686  	op_CHF     uint32 = 0xE3CD // FORMAT_RXY1       COMPARE HIGH (32)
  1687  	op_CHHR    uint32 = 0xB9CD // FORMAT_RRE        COMPARE HIGH (32)
  1688  	op_CHHSI   uint32 = 0xE554 // FORMAT_SIL        COMPARE HALFWORD IMMEDIATE (16)
  1689  	op_CHI     uint32 = 0xA70E // FORMAT_RI1        COMPARE HALFWORD IMMEDIATE (32<-16)
  1690  	op_CHLR    uint32 = 0xB9DD // FORMAT_RRE        COMPARE HIGH (32)
  1691  	op_CHRL    uint32 = 0xC605 // FORMAT_RIL2       COMPARE HALFWORD RELATIVE LONG (32<-16)
  1692  	op_CHSI    uint32 = 0xE55C // FORMAT_SIL        COMPARE HALFWORD IMMEDIATE (32<-16)
  1693  	op_CHY     uint32 = 0xE379 // FORMAT_RXY1       COMPARE HALFWORD (32<-16)
  1694  	op_CIB     uint32 = 0xECFE // FORMAT_RIS        COMPARE IMMEDIATE AND BRANCH (32<-8)
  1695  	op_CIH     uint32 = 0xCC0D // FORMAT_RIL1       COMPARE IMMEDIATE HIGH (32)
  1696  	op_CIJ     uint32 = 0xEC7E // FORMAT_RIE3       COMPARE IMMEDIATE AND BRANCH RELATIVE (32<-8)
  1697  	op_CIT     uint32 = 0xEC72 // FORMAT_RIE1       COMPARE IMMEDIATE AND TRAP (32<-16)
  1698  	op_CKSM    uint32 = 0xB241 // FORMAT_RRE        CHECKSUM
  1699  	op_CL      uint32 = 0x5500 // FORMAT_RX1        COMPARE LOGICAL (32)
  1700  	op_CLC     uint32 = 0xD500 // FORMAT_SS1        COMPARE LOGICAL (character)
  1701  	op_CLCL    uint32 = 0x0F00 // FORMAT_RR         COMPARE LOGICAL LONG
  1702  	op_CLCLE   uint32 = 0xA900 // FORMAT_RS1        COMPARE LOGICAL LONG EXTENDED
  1703  	op_CLCLU   uint32 = 0xEB8F // FORMAT_RSY1       COMPARE LOGICAL LONG UNICODE
  1704  	op_CLFDBR  uint32 = 0xB39D // FORMAT_RRF5       CONVERT TO LOGICAL (long BFP to 32)
  1705  	op_CLFDTR  uint32 = 0xB943 // FORMAT_RRF5       CONVERT TO LOGICAL (long DFP to 32)
  1706  	op_CLFEBR  uint32 = 0xB39C // FORMAT_RRF5       CONVERT TO LOGICAL (short BFP to 32)
  1707  	op_CLFHSI  uint32 = 0xE55D // FORMAT_SIL        COMPARE LOGICAL IMMEDIATE (32<-16)
  1708  	op_CLFI    uint32 = 0xC20F // FORMAT_RIL1       COMPARE LOGICAL IMMEDIATE (32)
  1709  	op_CLFIT   uint32 = 0xEC73 // FORMAT_RIE1       COMPARE LOGICAL IMMEDIATE AND TRAP (32<-16)
  1710  	op_CLFXBR  uint32 = 0xB39E // FORMAT_RRF5       CONVERT TO LOGICAL (extended BFP to 32)
  1711  	op_CLFXTR  uint32 = 0xB94B // FORMAT_RRF5       CONVERT TO LOGICAL (extended DFP to 32)
  1712  	op_CLG     uint32 = 0xE321 // FORMAT_RXY1       COMPARE LOGICAL (64)
  1713  	op_CLGDBR  uint32 = 0xB3AD // FORMAT_RRF5       CONVERT TO LOGICAL (long BFP to 64)
  1714  	op_CLGDTR  uint32 = 0xB942 // FORMAT_RRF5       CONVERT TO LOGICAL (long DFP to 64)
  1715  	op_CLGEBR  uint32 = 0xB3AC // FORMAT_RRF5       CONVERT TO LOGICAL (short BFP to 64)
  1716  	op_CLGF    uint32 = 0xE331 // FORMAT_RXY1       COMPARE LOGICAL (64<-32)
  1717  	op_CLGFI   uint32 = 0xC20E // FORMAT_RIL1       COMPARE LOGICAL IMMEDIATE (64<-32)
  1718  	op_CLGFR   uint32 = 0xB931 // FORMAT_RRE        COMPARE LOGICAL (64<-32)
  1719  	op_CLGFRL  uint32 = 0xC60E // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (64<-32)
  1720  	op_CLGHRL  uint32 = 0xC606 // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (64<-16)
  1721  	op_CLGHSI  uint32 = 0xE559 // FORMAT_SIL        COMPARE LOGICAL IMMEDIATE (64<-16)
  1722  	op_CLGIB   uint32 = 0xECFD // FORMAT_RIS        COMPARE LOGICAL IMMEDIATE AND BRANCH (64<-8)
  1723  	op_CLGIJ   uint32 = 0xEC7D // FORMAT_RIE3       COMPARE LOGICAL IMMEDIATE AND BRANCH RELATIVE (64<-8)
  1724  	op_CLGIT   uint32 = 0xEC71 // FORMAT_RIE1       COMPARE LOGICAL IMMEDIATE AND TRAP (64<-16)
  1725  	op_CLGR    uint32 = 0xB921 // FORMAT_RRE        COMPARE LOGICAL (64)
  1726  	op_CLGRB   uint32 = 0xECE5 // FORMAT_RRS        COMPARE LOGICAL AND BRANCH (64)
  1727  	op_CLGRJ   uint32 = 0xEC65 // FORMAT_RIE2       COMPARE LOGICAL AND BRANCH RELATIVE (64)
  1728  	op_CLGRL   uint32 = 0xC60A // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (64)
  1729  	op_CLGRT   uint32 = 0xB961 // FORMAT_RRF3       COMPARE LOGICAL AND TRAP (64)
  1730  	op_CLGT    uint32 = 0xEB2B // FORMAT_RSY2       COMPARE LOGICAL AND TRAP (64)
  1731  	op_CLGXBR  uint32 = 0xB3AE // FORMAT_RRF5       CONVERT TO LOGICAL (extended BFP to 64)
  1732  	op_CLGXTR  uint32 = 0xB94A // FORMAT_RRF5       CONVERT TO LOGICAL (extended DFP to 64)
  1733  	op_CLHF    uint32 = 0xE3CF // FORMAT_RXY1       COMPARE LOGICAL HIGH (32)
  1734  	op_CLHHR   uint32 = 0xB9CF // FORMAT_RRE        COMPARE LOGICAL HIGH (32)
  1735  	op_CLHHSI  uint32 = 0xE555 // FORMAT_SIL        COMPARE LOGICAL IMMEDIATE (16)
  1736  	op_CLHLR   uint32 = 0xB9DF // FORMAT_RRE        COMPARE LOGICAL HIGH (32)
  1737  	op_CLHRL   uint32 = 0xC607 // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (32<-16)
  1738  	op_CLI     uint32 = 0x9500 // FORMAT_SI         COMPARE LOGICAL (immediate)
  1739  	op_CLIB    uint32 = 0xECFF // FORMAT_RIS        COMPARE LOGICAL IMMEDIATE AND BRANCH (32<-8)
  1740  	op_CLIH    uint32 = 0xCC0F // FORMAT_RIL1       COMPARE LOGICAL IMMEDIATE HIGH (32)
  1741  	op_CLIJ    uint32 = 0xEC7F // FORMAT_RIE3       COMPARE LOGICAL IMMEDIATE AND BRANCH RELATIVE (32<-8)
  1742  	op_CLIY    uint32 = 0xEB55 // FORMAT_SIY        COMPARE LOGICAL (immediate)
  1743  	op_CLM     uint32 = 0xBD00 // FORMAT_RS2        COMPARE LOGICAL CHAR. UNDER MASK (low)
  1744  	op_CLMH    uint32 = 0xEB20 // FORMAT_RSY2       COMPARE LOGICAL CHAR. UNDER MASK (high)
  1745  	op_CLMY    uint32 = 0xEB21 // FORMAT_RSY2       COMPARE LOGICAL CHAR. UNDER MASK (low)
  1746  	op_CLR     uint32 = 0x1500 // FORMAT_RR         COMPARE LOGICAL (32)
  1747  	op_CLRB    uint32 = 0xECF7 // FORMAT_RRS        COMPARE LOGICAL AND BRANCH (32)
  1748  	op_CLRJ    uint32 = 0xEC77 // FORMAT_RIE2       COMPARE LOGICAL AND BRANCH RELATIVE (32)
  1749  	op_CLRL    uint32 = 0xC60F // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (32)
  1750  	op_CLRT    uint32 = 0xB973 // FORMAT_RRF3       COMPARE LOGICAL AND TRAP (32)
  1751  	op_CLST    uint32 = 0xB25D // FORMAT_RRE        COMPARE LOGICAL STRING
  1752  	op_CLT     uint32 = 0xEB23 // FORMAT_RSY2       COMPARE LOGICAL AND TRAP (32)
  1753  	op_CLY     uint32 = 0xE355 // FORMAT_RXY1       COMPARE LOGICAL (32)
  1754  	op_CMPSC   uint32 = 0xB263 // FORMAT_RRE        COMPRESSION CALL
  1755  	op_CP      uint32 = 0xF900 // FORMAT_SS2        COMPARE DECIMAL
  1756  	op_CPSDR   uint32 = 0xB372 // FORMAT_RRF2       COPY SIGN (long)
  1757  	op_CPYA    uint32 = 0xB24D // FORMAT_RRE        COPY ACCESS
  1758  	op_CR      uint32 = 0x1900 // FORMAT_RR         COMPARE (32)
  1759  	op_CRB     uint32 = 0xECF6 // FORMAT_RRS        COMPARE AND BRANCH (32)
  1760  	op_CRDTE   uint32 = 0xB98F // FORMAT_RRF2       COMPARE AND REPLACE DAT TABLE ENTRY
  1761  	op_CRJ     uint32 = 0xEC76 // FORMAT_RIE2       COMPARE AND BRANCH RELATIVE (32)
  1762  	op_CRL     uint32 = 0xC60D // FORMAT_RIL2       COMPARE RELATIVE LONG (32)
  1763  	op_CRT     uint32 = 0xB972 // FORMAT_RRF3       COMPARE AND TRAP (32)
  1764  	op_CS      uint32 = 0xBA00 // FORMAT_RS1        COMPARE AND SWAP (32)
  1765  	op_CSCH    uint32 = 0xB230 // FORMAT_S          CLEAR SUBCHANNEL
  1766  	op_CSDTR   uint32 = 0xB3E3 // FORMAT_RRF4       CONVERT TO SIGNED PACKED (long DFP to 64)
  1767  	op_CSG     uint32 = 0xEB30 // FORMAT_RSY1       COMPARE AND SWAP (64)
  1768  	op_CSP     uint32 = 0xB250 // FORMAT_RRE        COMPARE AND SWAP AND PURGE
  1769  	op_CSPG    uint32 = 0xB98A // FORMAT_RRE        COMPARE AND SWAP AND PURGE
  1770  	op_CSST    uint32 = 0xC802 // FORMAT_SSF        COMPARE AND SWAP AND STORE
  1771  	op_CSXTR   uint32 = 0xB3EB // FORMAT_RRF4       CONVERT TO SIGNED PACKED (extended DFP to 128)
  1772  	op_CSY     uint32 = 0xEB14 // FORMAT_RSY1       COMPARE AND SWAP (32)
  1773  	op_CU12    uint32 = 0xB2A7 // FORMAT_RRF3       CONVERT UTF-8 TO UTF-16
  1774  	op_CU14    uint32 = 0xB9B0 // FORMAT_RRF3       CONVERT UTF-8 TO UTF-32
  1775  	op_CU21    uint32 = 0xB2A6 // FORMAT_RRF3       CONVERT UTF-16 TO UTF-8
  1776  	op_CU24    uint32 = 0xB9B1 // FORMAT_RRF3       CONVERT UTF-16 TO UTF-32
  1777  	op_CU41    uint32 = 0xB9B2 // FORMAT_RRE        CONVERT UTF-32 TO UTF-8
  1778  	op_CU42    uint32 = 0xB9B3 // FORMAT_RRE        CONVERT UTF-32 TO UTF-16
  1779  	op_CUDTR   uint32 = 0xB3E2 // FORMAT_RRE        CONVERT TO UNSIGNED PACKED (long DFP to 64)
  1780  	op_CUSE    uint32 = 0xB257 // FORMAT_RRE        COMPARE UNTIL SUBSTRING EQUAL
  1781  	op_CUTFU   uint32 = 0xB2A7 // FORMAT_RRF3       CONVERT UTF-8 TO UNICODE
  1782  	op_CUUTF   uint32 = 0xB2A6 // FORMAT_RRF3       CONVERT UNICODE TO UTF-8
  1783  	op_CUXTR   uint32 = 0xB3EA // FORMAT_RRE        CONVERT TO UNSIGNED PACKED (extended DFP to 128)
  1784  	op_CVB     uint32 = 0x4F00 // FORMAT_RX1        CONVERT TO BINARY (32)
  1785  	op_CVBG    uint32 = 0xE30E // FORMAT_RXY1       CONVERT TO BINARY (64)
  1786  	op_CVBY    uint32 = 0xE306 // FORMAT_RXY1       CONVERT TO BINARY (32)
  1787  	op_CVD     uint32 = 0x4E00 // FORMAT_RX1        CONVERT TO DECIMAL (32)
  1788  	op_CVDG    uint32 = 0xE32E // FORMAT_RXY1       CONVERT TO DECIMAL (64)
  1789  	op_CVDY    uint32 = 0xE326 // FORMAT_RXY1       CONVERT TO DECIMAL (32)
  1790  	op_CXBR    uint32 = 0xB349 // FORMAT_RRE        COMPARE (extended BFP)
  1791  	op_CXFBR   uint32 = 0xB396 // FORMAT_RRE        CONVERT FROM FIXED (32 to extended BFP)
  1792  	op_CXFBRA  uint32 = 0xB396 // FORMAT_RRF5       CONVERT FROM FIXED (32 to extended BFP)
  1793  	op_CXFR    uint32 = 0xB3B6 // FORMAT_RRE        CONVERT FROM FIXED (32 to extended HFP)
  1794  	op_CXFTR   uint32 = 0xB959 // FORMAT_RRE        CONVERT FROM FIXED (32 to extended DFP)
  1795  	op_CXGBR   uint32 = 0xB3A6 // FORMAT_RRE        CONVERT FROM FIXED (64 to extended BFP)
  1796  	op_CXGBRA  uint32 = 0xB3A6 // FORMAT_RRF5       CONVERT FROM FIXED (64 to extended BFP)
  1797  	op_CXGR    uint32 = 0xB3C6 // FORMAT_RRE        CONVERT FROM FIXED (64 to extended HFP)
  1798  	op_CXGTR   uint32 = 0xB3F9 // FORMAT_RRE        CONVERT FROM FIXED (64 to extended DFP)
  1799  	op_CXGTRA  uint32 = 0xB3F9 // FORMAT_RRF5       CONVERT FROM FIXED (64 to extended DFP)
  1800  	op_CXLFBR  uint32 = 0xB392 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to extended BFP)
  1801  	op_CXLFTR  uint32 = 0xB95B // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to extended DFP)
  1802  	op_CXLGBR  uint32 = 0xB3A2 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to extended BFP)
  1803  	op_CXLGTR  uint32 = 0xB95A // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to extended DFP)
  1804  	op_CXR     uint32 = 0xB369 // FORMAT_RRE        COMPARE (extended HFP)
  1805  	op_CXSTR   uint32 = 0xB3FB // FORMAT_RRE        CONVERT FROM SIGNED PACKED (128 to extended DFP)
  1806  	op_CXTR    uint32 = 0xB3EC // FORMAT_RRE        COMPARE (extended DFP)
  1807  	op_CXUTR   uint32 = 0xB3FA // FORMAT_RRE        CONVERT FROM UNSIGNED PACKED (128 to ext. DFP)
  1808  	op_CXZT    uint32 = 0xEDAB // FORMAT_RSL        CONVERT FROM ZONED (to extended DFP)
  1809  	op_CY      uint32 = 0xE359 // FORMAT_RXY1       COMPARE (32)
  1810  	op_CZDT    uint32 = 0xEDA8 // FORMAT_RSL        CONVERT TO ZONED (from long DFP)
  1811  	op_CZXT    uint32 = 0xEDA9 // FORMAT_RSL        CONVERT TO ZONED (from extended DFP)
  1812  	op_D       uint32 = 0x5D00 // FORMAT_RX1        DIVIDE (32<-64)
  1813  	op_DD      uint32 = 0x6D00 // FORMAT_RX1        DIVIDE (long HFP)
  1814  	op_DDB     uint32 = 0xED1D // FORMAT_RXE        DIVIDE (long BFP)
  1815  	op_DDBR    uint32 = 0xB31D // FORMAT_RRE        DIVIDE (long BFP)
  1816  	op_DDR     uint32 = 0x2D00 // FORMAT_RR         DIVIDE (long HFP)
  1817  	op_DDTR    uint32 = 0xB3D1 // FORMAT_RRF1       DIVIDE (long DFP)
  1818  	op_DDTRA   uint32 = 0xB3D1 // FORMAT_RRF1       DIVIDE (long DFP)
  1819  	op_DE      uint32 = 0x7D00 // FORMAT_RX1        DIVIDE (short HFP)
  1820  	op_DEB     uint32 = 0xED0D // FORMAT_RXE        DIVIDE (short BFP)
  1821  	op_DEBR    uint32 = 0xB30D // FORMAT_RRE        DIVIDE (short BFP)
  1822  	op_DER     uint32 = 0x3D00 // FORMAT_RR         DIVIDE (short HFP)
  1823  	op_DIDBR   uint32 = 0xB35B // FORMAT_RRF2       DIVIDE TO INTEGER (long BFP)
  1824  	op_DIEBR   uint32 = 0xB353 // FORMAT_RRF2       DIVIDE TO INTEGER (short BFP)
  1825  	op_DL      uint32 = 0xE397 // FORMAT_RXY1       DIVIDE LOGICAL (32<-64)
  1826  	op_DLG     uint32 = 0xE387 // FORMAT_RXY1       DIVIDE LOGICAL (64<-128)
  1827  	op_DLGR    uint32 = 0xB987 // FORMAT_RRE        DIVIDE LOGICAL (64<-128)
  1828  	op_DLR     uint32 = 0xB997 // FORMAT_RRE        DIVIDE LOGICAL (32<-64)
  1829  	op_DP      uint32 = 0xFD00 // FORMAT_SS2        DIVIDE DECIMAL
  1830  	op_DR      uint32 = 0x1D00 // FORMAT_RR         DIVIDE (32<-64)
  1831  	op_DSG     uint32 = 0xE30D // FORMAT_RXY1       DIVIDE SINGLE (64)
  1832  	op_DSGF    uint32 = 0xE31D // FORMAT_RXY1       DIVIDE SINGLE (64<-32)
  1833  	op_DSGFR   uint32 = 0xB91D // FORMAT_RRE        DIVIDE SINGLE (64<-32)
  1834  	op_DSGR    uint32 = 0xB90D // FORMAT_RRE        DIVIDE SINGLE (64)
  1835  	op_DXBR    uint32 = 0xB34D // FORMAT_RRE        DIVIDE (extended BFP)
  1836  	op_DXR     uint32 = 0xB22D // FORMAT_RRE        DIVIDE (extended HFP)
  1837  	op_DXTR    uint32 = 0xB3D9 // FORMAT_RRF1       DIVIDE (extended DFP)
  1838  	op_DXTRA   uint32 = 0xB3D9 // FORMAT_RRF1       DIVIDE (extended DFP)
  1839  	op_EAR     uint32 = 0xB24F // FORMAT_RRE        EXTRACT ACCESS
  1840  	op_ECAG    uint32 = 0xEB4C // FORMAT_RSY1       EXTRACT CACHE ATTRIBUTE
  1841  	op_ECTG    uint32 = 0xC801 // FORMAT_SSF        EXTRACT CPU TIME
  1842  	op_ED      uint32 = 0xDE00 // FORMAT_SS1        EDIT
  1843  	op_EDMK    uint32 = 0xDF00 // FORMAT_SS1        EDIT AND MARK
  1844  	op_EEDTR   uint32 = 0xB3E5 // FORMAT_RRE        EXTRACT BIASED EXPONENT (long DFP to 64)
  1845  	op_EEXTR   uint32 = 0xB3ED // FORMAT_RRE        EXTRACT BIASED EXPONENT (extended DFP to 64)
  1846  	op_EFPC    uint32 = 0xB38C // FORMAT_RRE        EXTRACT FPC
  1847  	op_EPAIR   uint32 = 0xB99A // FORMAT_RRE        EXTRACT PRIMARY ASN AND INSTANCE
  1848  	op_EPAR    uint32 = 0xB226 // FORMAT_RRE        EXTRACT PRIMARY ASN
  1849  	op_EPSW    uint32 = 0xB98D // FORMAT_RRE        EXTRACT PSW
  1850  	op_EREG    uint32 = 0xB249 // FORMAT_RRE        EXTRACT STACKED REGISTERS (32)
  1851  	op_EREGG   uint32 = 0xB90E // FORMAT_RRE        EXTRACT STACKED REGISTERS (64)
  1852  	op_ESAIR   uint32 = 0xB99B // FORMAT_RRE        EXTRACT SECONDARY ASN AND INSTANCE
  1853  	op_ESAR    uint32 = 0xB227 // FORMAT_RRE        EXTRACT SECONDARY ASN
  1854  	op_ESDTR   uint32 = 0xB3E7 // FORMAT_RRE        EXTRACT SIGNIFICANCE (long DFP)
  1855  	op_ESEA    uint32 = 0xB99D // FORMAT_RRE        EXTRACT AND SET EXTENDED AUTHORITY
  1856  	op_ESTA    uint32 = 0xB24A // FORMAT_RRE        EXTRACT STACKED STATE
  1857  	op_ESXTR   uint32 = 0xB3EF // FORMAT_RRE        EXTRACT SIGNIFICANCE (extended DFP)
  1858  	op_ETND    uint32 = 0xB2EC // FORMAT_RRE        EXTRACT TRANSACTION NESTING DEPTH
  1859  	op_EX      uint32 = 0x4400 // FORMAT_RX1        EXECUTE
  1860  	op_EXRL    uint32 = 0xC600 // FORMAT_RIL2       EXECUTE RELATIVE LONG
  1861  	op_FIDBR   uint32 = 0xB35F // FORMAT_RRF5       LOAD FP INTEGER (long BFP)
  1862  	op_FIDBRA  uint32 = 0xB35F // FORMAT_RRF5       LOAD FP INTEGER (long BFP)
  1863  	op_FIDR    uint32 = 0xB37F // FORMAT_RRE        LOAD FP INTEGER (long HFP)
  1864  	op_FIDTR   uint32 = 0xB3D7 // FORMAT_RRF5       LOAD FP INTEGER (long DFP)
  1865  	op_FIEBR   uint32 = 0xB357 // FORMAT_RRF5       LOAD FP INTEGER (short BFP)
  1866  	op_FIEBRA  uint32 = 0xB357 // FORMAT_RRF5       LOAD FP INTEGER (short BFP)
  1867  	op_FIER    uint32 = 0xB377 // FORMAT_RRE        LOAD FP INTEGER (short HFP)
  1868  	op_FIXBR   uint32 = 0xB347 // FORMAT_RRF5       LOAD FP INTEGER (extended BFP)
  1869  	op_FIXBRA  uint32 = 0xB347 // FORMAT_RRF5       LOAD FP INTEGER (extended BFP)
  1870  	op_FIXR    uint32 = 0xB367 // FORMAT_RRE        LOAD FP INTEGER (extended HFP)
  1871  	op_FIXTR   uint32 = 0xB3DF // FORMAT_RRF5       LOAD FP INTEGER (extended DFP)
  1872  	op_FLOGR   uint32 = 0xB983 // FORMAT_RRE        FIND LEFTMOST ONE
  1873  	op_HDR     uint32 = 0x2400 // FORMAT_RR         HALVE (long HFP)
  1874  	op_HER     uint32 = 0x3400 // FORMAT_RR         HALVE (short HFP)
  1875  	op_HSCH    uint32 = 0xB231 // FORMAT_S          HALT SUBCHANNEL
  1876  	op_IAC     uint32 = 0xB224 // FORMAT_RRE        INSERT ADDRESS SPACE CONTROL
  1877  	op_IC      uint32 = 0x4300 // FORMAT_RX1        INSERT CHARACTER
  1878  	op_ICM     uint32 = 0xBF00 // FORMAT_RS2        INSERT CHARACTERS UNDER MASK (low)
  1879  	op_ICMH    uint32 = 0xEB80 // FORMAT_RSY2       INSERT CHARACTERS UNDER MASK (high)
  1880  	op_ICMY    uint32 = 0xEB81 // FORMAT_RSY2       INSERT CHARACTERS UNDER MASK (low)
  1881  	op_ICY     uint32 = 0xE373 // FORMAT_RXY1       INSERT CHARACTER
  1882  	op_IDTE    uint32 = 0xB98E // FORMAT_RRF2       INVALIDATE DAT TABLE ENTRY
  1883  	op_IEDTR   uint32 = 0xB3F6 // FORMAT_RRF2       INSERT BIASED EXPONENT (64 to long DFP)
  1884  	op_IEXTR   uint32 = 0xB3FE // FORMAT_RRF2       INSERT BIASED EXPONENT (64 to extended DFP)
  1885  	op_IIHF    uint32 = 0xC008 // FORMAT_RIL1       INSERT IMMEDIATE (high)
  1886  	op_IIHH    uint32 = 0xA500 // FORMAT_RI1        INSERT IMMEDIATE (high high)
  1887  	op_IIHL    uint32 = 0xA501 // FORMAT_RI1        INSERT IMMEDIATE (high low)
  1888  	op_IILF    uint32 = 0xC009 // FORMAT_RIL1       INSERT IMMEDIATE (low)
  1889  	op_IILH    uint32 = 0xA502 // FORMAT_RI1        INSERT IMMEDIATE (low high)
  1890  	op_IILL    uint32 = 0xA503 // FORMAT_RI1        INSERT IMMEDIATE (low low)
  1891  	op_IPK     uint32 = 0xB20B // FORMAT_S          INSERT PSW KEY
  1892  	op_IPM     uint32 = 0xB222 // FORMAT_RRE        INSERT PROGRAM MASK
  1893  	op_IPTE    uint32 = 0xB221 // FORMAT_RRF1       INVALIDATE PAGE TABLE ENTRY
  1894  	op_ISKE    uint32 = 0xB229 // FORMAT_RRE        INSERT STORAGE KEY EXTENDED
  1895  	op_IVSK    uint32 = 0xB223 // FORMAT_RRE        INSERT VIRTUAL STORAGE KEY
  1896  	op_KDB     uint32 = 0xED18 // FORMAT_RXE        COMPARE AND SIGNAL (long BFP)
  1897  	op_KDBR    uint32 = 0xB318 // FORMAT_RRE        COMPARE AND SIGNAL (long BFP)
  1898  	op_KDTR    uint32 = 0xB3E0 // FORMAT_RRE        COMPARE AND SIGNAL (long DFP)
  1899  	op_KEB     uint32 = 0xED08 // FORMAT_RXE        COMPARE AND SIGNAL (short BFP)
  1900  	op_KEBR    uint32 = 0xB308 // FORMAT_RRE        COMPARE AND SIGNAL (short BFP)
  1901  	op_KIMD    uint32 = 0xB93E // FORMAT_RRE        COMPUTE INTERMEDIATE MESSAGE DIGEST
  1902  	op_KLMD    uint32 = 0xB93F // FORMAT_RRE        COMPUTE LAST MESSAGE DIGEST
  1903  	op_KM      uint32 = 0xB92E // FORMAT_RRE        CIPHER MESSAGE
  1904  	op_KMAC    uint32 = 0xB91E // FORMAT_RRE        COMPUTE MESSAGE AUTHENTICATION CODE
  1905  	op_KMC     uint32 = 0xB92F // FORMAT_RRE        CIPHER MESSAGE WITH CHAINING
  1906  	op_KMA     uint32 = 0xB929 // FORMAT_RRF2       CIPHER MESSAGE WITH AUTHENTICATION
  1907  	op_KMCTR   uint32 = 0xB92D // FORMAT_RRF2       CIPHER MESSAGE WITH COUNTER
  1908  	op_KMF     uint32 = 0xB92A // FORMAT_RRE        CIPHER MESSAGE WITH CFB
  1909  	op_KMO     uint32 = 0xB92B // FORMAT_RRE        CIPHER MESSAGE WITH OFB
  1910  	op_KXBR    uint32 = 0xB348 // FORMAT_RRE        COMPARE AND SIGNAL (extended BFP)
  1911  	op_KXTR    uint32 = 0xB3E8 // FORMAT_RRE        COMPARE AND SIGNAL (extended DFP)
  1912  	op_L       uint32 = 0x5800 // FORMAT_RX1        LOAD (32)
  1913  	op_LA      uint32 = 0x4100 // FORMAT_RX1        LOAD ADDRESS
  1914  	op_LAA     uint32 = 0xEBF8 // FORMAT_RSY1       LOAD AND ADD (32)
  1915  	op_LAAG    uint32 = 0xEBE8 // FORMAT_RSY1       LOAD AND ADD (64)
  1916  	op_LAAL    uint32 = 0xEBFA // FORMAT_RSY1       LOAD AND ADD LOGICAL (32)
  1917  	op_LAALG   uint32 = 0xEBEA // FORMAT_RSY1       LOAD AND ADD LOGICAL (64)
  1918  	op_LAE     uint32 = 0x5100 // FORMAT_RX1        LOAD ADDRESS EXTENDED
  1919  	op_LAEY    uint32 = 0xE375 // FORMAT_RXY1       LOAD ADDRESS EXTENDED
  1920  	op_LAM     uint32 = 0x9A00 // FORMAT_RS1        LOAD ACCESS MULTIPLE
  1921  	op_LAMY    uint32 = 0xEB9A // FORMAT_RSY1       LOAD ACCESS MULTIPLE
  1922  	op_LAN     uint32 = 0xEBF4 // FORMAT_RSY1       LOAD AND AND (32)
  1923  	op_LANG    uint32 = 0xEBE4 // FORMAT_RSY1       LOAD AND AND (64)
  1924  	op_LAO     uint32 = 0xEBF6 // FORMAT_RSY1       LOAD AND OR (32)
  1925  	op_LAOG    uint32 = 0xEBE6 // FORMAT_RSY1       LOAD AND OR (64)
  1926  	op_LARL    uint32 = 0xC000 // FORMAT_RIL2       LOAD ADDRESS RELATIVE LONG
  1927  	op_LASP    uint32 = 0xE500 // FORMAT_SSE        LOAD ADDRESS SPACE PARAMETERS
  1928  	op_LAT     uint32 = 0xE39F // FORMAT_RXY1       LOAD AND TRAP (32L<-32)
  1929  	op_LAX     uint32 = 0xEBF7 // FORMAT_RSY1       LOAD AND EXCLUSIVE OR (32)
  1930  	op_LAXG    uint32 = 0xEBE7 // FORMAT_RSY1       LOAD AND EXCLUSIVE OR (64)
  1931  	op_LAY     uint32 = 0xE371 // FORMAT_RXY1       LOAD ADDRESS
  1932  	op_LB      uint32 = 0xE376 // FORMAT_RXY1       LOAD BYTE (32)
  1933  	op_LBH     uint32 = 0xE3C0 // FORMAT_RXY1       LOAD BYTE HIGH (32<-8)
  1934  	op_LBR     uint32 = 0xB926 // FORMAT_RRE        LOAD BYTE (32)
  1935  	op_LCDBR   uint32 = 0xB313 // FORMAT_RRE        LOAD COMPLEMENT (long BFP)
  1936  	op_LCDFR   uint32 = 0xB373 // FORMAT_RRE        LOAD COMPLEMENT (long)
  1937  	op_LCDR    uint32 = 0x2300 // FORMAT_RR         LOAD COMPLEMENT (long HFP)
  1938  	op_LCEBR   uint32 = 0xB303 // FORMAT_RRE        LOAD COMPLEMENT (short BFP)
  1939  	op_LCER    uint32 = 0x3300 // FORMAT_RR         LOAD COMPLEMENT (short HFP)
  1940  	op_LCGFR   uint32 = 0xB913 // FORMAT_RRE        LOAD COMPLEMENT (64<-32)
  1941  	op_LCGR    uint32 = 0xB903 // FORMAT_RRE        LOAD COMPLEMENT (64)
  1942  	op_LCR     uint32 = 0x1300 // FORMAT_RR         LOAD COMPLEMENT (32)
  1943  	op_LCTL    uint32 = 0xB700 // FORMAT_RS1        LOAD CONTROL (32)
  1944  	op_LCTLG   uint32 = 0xEB2F // FORMAT_RSY1       LOAD CONTROL (64)
  1945  	op_LCXBR   uint32 = 0xB343 // FORMAT_RRE        LOAD COMPLEMENT (extended BFP)
  1946  	op_LCXR    uint32 = 0xB363 // FORMAT_RRE        LOAD COMPLEMENT (extended HFP)
  1947  	op_LD      uint32 = 0x6800 // FORMAT_RX1        LOAD (long)
  1948  	op_LDE     uint32 = 0xED24 // FORMAT_RXE        LOAD LENGTHENED (short to long HFP)
  1949  	op_LDEB    uint32 = 0xED04 // FORMAT_RXE        LOAD LENGTHENED (short to long BFP)
  1950  	op_LDEBR   uint32 = 0xB304 // FORMAT_RRE        LOAD LENGTHENED (short to long BFP)
  1951  	op_LDER    uint32 = 0xB324 // FORMAT_RRE        LOAD LENGTHENED (short to long HFP)
  1952  	op_LDETR   uint32 = 0xB3D4 // FORMAT_RRF4       LOAD LENGTHENED (short to long DFP)
  1953  	op_LDGR    uint32 = 0xB3C1 // FORMAT_RRE        LOAD FPR FROM GR (64 to long)
  1954  	op_LDR     uint32 = 0x2800 // FORMAT_RR         LOAD (long)
  1955  	op_LDXBR   uint32 = 0xB345 // FORMAT_RRE        LOAD ROUNDED (extended to long BFP)
  1956  	op_LDXBRA  uint32 = 0xB345 // FORMAT_RRF5       LOAD ROUNDED (extended to long BFP)
  1957  	op_LDXR    uint32 = 0x2500 // FORMAT_RR         LOAD ROUNDED (extended to long HFP)
  1958  	op_LDXTR   uint32 = 0xB3DD // FORMAT_RRF5       LOAD ROUNDED (extended to long DFP)
  1959  	op_LDY     uint32 = 0xED65 // FORMAT_RXY1       LOAD (long)
  1960  	op_LE      uint32 = 0x7800 // FORMAT_RX1        LOAD (short)
  1961  	op_LEDBR   uint32 = 0xB344 // FORMAT_RRE        LOAD ROUNDED (long to short BFP)
  1962  	op_LEDBRA  uint32 = 0xB344 // FORMAT_RRF5       LOAD ROUNDED (long to short BFP)
  1963  	op_LEDR    uint32 = 0x3500 // FORMAT_RR         LOAD ROUNDED (long to short HFP)
  1964  	op_LEDTR   uint32 = 0xB3D5 // FORMAT_RRF5       LOAD ROUNDED (long to short DFP)
  1965  	op_LER     uint32 = 0x3800 // FORMAT_RR         LOAD (short)
  1966  	op_LEXBR   uint32 = 0xB346 // FORMAT_RRE        LOAD ROUNDED (extended to short BFP)
  1967  	op_LEXBRA  uint32 = 0xB346 // FORMAT_RRF5       LOAD ROUNDED (extended to short BFP)
  1968  	op_LEXR    uint32 = 0xB366 // FORMAT_RRE        LOAD ROUNDED (extended to short HFP)
  1969  	op_LEY     uint32 = 0xED64 // FORMAT_RXY1       LOAD (short)
  1970  	op_LFAS    uint32 = 0xB2BD // FORMAT_S          LOAD FPC AND SIGNAL
  1971  	op_LFH     uint32 = 0xE3CA // FORMAT_RXY1       LOAD HIGH (32)
  1972  	op_LFHAT   uint32 = 0xE3C8 // FORMAT_RXY1       LOAD HIGH AND TRAP (32H<-32)
  1973  	op_LFPC    uint32 = 0xB29D // FORMAT_S          LOAD FPC
  1974  	op_LG      uint32 = 0xE304 // FORMAT_RXY1       LOAD (64)
  1975  	op_LGAT    uint32 = 0xE385 // FORMAT_RXY1       LOAD AND TRAP (64)
  1976  	op_LGB     uint32 = 0xE377 // FORMAT_RXY1       LOAD BYTE (64)
  1977  	op_LGBR    uint32 = 0xB906 // FORMAT_RRE        LOAD BYTE (64)
  1978  	op_LGDR    uint32 = 0xB3CD // FORMAT_RRE        LOAD GR FROM FPR (long to 64)
  1979  	op_LGF     uint32 = 0xE314 // FORMAT_RXY1       LOAD (64<-32)
  1980  	op_LGFI    uint32 = 0xC001 // FORMAT_RIL1       LOAD IMMEDIATE (64<-32)
  1981  	op_LGFR    uint32 = 0xB914 // FORMAT_RRE        LOAD (64<-32)
  1982  	op_LGFRL   uint32 = 0xC40C // FORMAT_RIL2       LOAD RELATIVE LONG (64<-32)
  1983  	op_LGH     uint32 = 0xE315 // FORMAT_RXY1       LOAD HALFWORD (64)
  1984  	op_LGHI    uint32 = 0xA709 // FORMAT_RI1        LOAD HALFWORD IMMEDIATE (64)
  1985  	op_LGHR    uint32 = 0xB907 // FORMAT_RRE        LOAD HALFWORD (64)
  1986  	op_LGHRL   uint32 = 0xC404 // FORMAT_RIL2       LOAD HALFWORD RELATIVE LONG (64<-16)
  1987  	op_LGR     uint32 = 0xB904 // FORMAT_RRE        LOAD (64)
  1988  	op_LGRL    uint32 = 0xC408 // FORMAT_RIL2       LOAD RELATIVE LONG (64)
  1989  	op_LH      uint32 = 0x4800 // FORMAT_RX1        LOAD HALFWORD (32)
  1990  	op_LHH     uint32 = 0xE3C4 // FORMAT_RXY1       LOAD HALFWORD HIGH (32<-16)
  1991  	op_LHI     uint32 = 0xA708 // FORMAT_RI1        LOAD HALFWORD IMMEDIATE (32)
  1992  	op_LHR     uint32 = 0xB927 // FORMAT_RRE        LOAD HALFWORD (32)
  1993  	op_LHRL    uint32 = 0xC405 // FORMAT_RIL2       LOAD HALFWORD RELATIVE LONG (32<-16)
  1994  	op_LHY     uint32 = 0xE378 // FORMAT_RXY1       LOAD HALFWORD (32)
  1995  	op_LLC     uint32 = 0xE394 // FORMAT_RXY1       LOAD LOGICAL CHARACTER (32)
  1996  	op_LLCH    uint32 = 0xE3C2 // FORMAT_RXY1       LOAD LOGICAL CHARACTER HIGH (32<-8)
  1997  	op_LLCR    uint32 = 0xB994 // FORMAT_RRE        LOAD LOGICAL CHARACTER (32)
  1998  	op_LLGC    uint32 = 0xE390 // FORMAT_RXY1       LOAD LOGICAL CHARACTER (64)
  1999  	op_LLGCR   uint32 = 0xB984 // FORMAT_RRE        LOAD LOGICAL CHARACTER (64)
  2000  	op_LLGF    uint32 = 0xE316 // FORMAT_RXY1       LOAD LOGICAL (64<-32)
  2001  	op_LLGFAT  uint32 = 0xE39D // FORMAT_RXY1       LOAD LOGICAL AND TRAP (64<-32)
  2002  	op_LLGFR   uint32 = 0xB916 // FORMAT_RRE        LOAD LOGICAL (64<-32)
  2003  	op_LLGFRL  uint32 = 0xC40E // FORMAT_RIL2       LOAD LOGICAL RELATIVE LONG (64<-32)
  2004  	op_LLGH    uint32 = 0xE391 // FORMAT_RXY1       LOAD LOGICAL HALFWORD (64)
  2005  	op_LLGHR   uint32 = 0xB985 // FORMAT_RRE        LOAD LOGICAL HALFWORD (64)
  2006  	op_LLGHRL  uint32 = 0xC406 // FORMAT_RIL2       LOAD LOGICAL HALFWORD RELATIVE LONG (64<-16)
  2007  	op_LLGT    uint32 = 0xE317 // FORMAT_RXY1       LOAD LOGICAL THIRTY ONE BITS
  2008  	op_LLGTAT  uint32 = 0xE39C // FORMAT_RXY1       LOAD LOGICAL THIRTY ONE BITS AND TRAP (64<-31)
  2009  	op_LLGTR   uint32 = 0xB917 // FORMAT_RRE        LOAD LOGICAL THIRTY ONE BITS
  2010  	op_LLH     uint32 = 0xE395 // FORMAT_RXY1       LOAD LOGICAL HALFWORD (32)
  2011  	op_LLHH    uint32 = 0xE3C6 // FORMAT_RXY1       LOAD LOGICAL HALFWORD HIGH (32<-16)
  2012  	op_LLHR    uint32 = 0xB995 // FORMAT_RRE        LOAD LOGICAL HALFWORD (32)
  2013  	op_LLHRL   uint32 = 0xC402 // FORMAT_RIL2       LOAD LOGICAL HALFWORD RELATIVE LONG (32<-16)
  2014  	op_LLIHF   uint32 = 0xC00E // FORMAT_RIL1       LOAD LOGICAL IMMEDIATE (high)
  2015  	op_LLIHH   uint32 = 0xA50C // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (high high)
  2016  	op_LLIHL   uint32 = 0xA50D // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (high low)
  2017  	op_LLILF   uint32 = 0xC00F // FORMAT_RIL1       LOAD LOGICAL IMMEDIATE (low)
  2018  	op_LLILH   uint32 = 0xA50E // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (low high)
  2019  	op_LLILL   uint32 = 0xA50F // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (low low)
  2020  	op_LM      uint32 = 0x9800 // FORMAT_RS1        LOAD MULTIPLE (32)
  2021  	op_LMD     uint32 = 0xEF00 // FORMAT_SS5        LOAD MULTIPLE DISJOINT
  2022  	op_LMG     uint32 = 0xEB04 // FORMAT_RSY1       LOAD MULTIPLE (64)
  2023  	op_LMH     uint32 = 0xEB96 // FORMAT_RSY1       LOAD MULTIPLE HIGH
  2024  	op_LMY     uint32 = 0xEB98 // FORMAT_RSY1       LOAD MULTIPLE (32)
  2025  	op_LNDBR   uint32 = 0xB311 // FORMAT_RRE        LOAD NEGATIVE (long BFP)
  2026  	op_LNDFR   uint32 = 0xB371 // FORMAT_RRE        LOAD NEGATIVE (long)
  2027  	op_LNDR    uint32 = 0x2100 // FORMAT_RR         LOAD NEGATIVE (long HFP)
  2028  	op_LNEBR   uint32 = 0xB301 // FORMAT_RRE        LOAD NEGATIVE (short BFP)
  2029  	op_LNER    uint32 = 0x3100 // FORMAT_RR         LOAD NEGATIVE (short HFP)
  2030  	op_LNGFR   uint32 = 0xB911 // FORMAT_RRE        LOAD NEGATIVE (64<-32)
  2031  	op_LNGR    uint32 = 0xB901 // FORMAT_RRE        LOAD NEGATIVE (64)
  2032  	op_LNR     uint32 = 0x1100 // FORMAT_RR         LOAD NEGATIVE (32)
  2033  	op_LNXBR   uint32 = 0xB341 // FORMAT_RRE        LOAD NEGATIVE (extended BFP)
  2034  	op_LNXR    uint32 = 0xB361 // FORMAT_RRE        LOAD NEGATIVE (extended HFP)
  2035  	op_LOC     uint32 = 0xEBF2 // FORMAT_RSY2       LOAD ON CONDITION (32)
  2036  	op_LOCG    uint32 = 0xEBE2 // FORMAT_RSY2       LOAD ON CONDITION (64)
  2037  	op_LOCGR   uint32 = 0xB9E2 // FORMAT_RRF3       LOAD ON CONDITION (64)
  2038  	op_LOCR    uint32 = 0xB9F2 // FORMAT_RRF3       LOAD ON CONDITION (32)
  2039  	op_LPD     uint32 = 0xC804 // FORMAT_SSF        LOAD PAIR DISJOINT (32)
  2040  	op_LPDBR   uint32 = 0xB310 // FORMAT_RRE        LOAD POSITIVE (long BFP)
  2041  	op_LPDFR   uint32 = 0xB370 // FORMAT_RRE        LOAD POSITIVE (long)
  2042  	op_LPDG    uint32 = 0xC805 // FORMAT_SSF        LOAD PAIR DISJOINT (64)
  2043  	op_LPDR    uint32 = 0x2000 // FORMAT_RR         LOAD POSITIVE (long HFP)
  2044  	op_LPEBR   uint32 = 0xB300 // FORMAT_RRE        LOAD POSITIVE (short BFP)
  2045  	op_LPER    uint32 = 0x3000 // FORMAT_RR         LOAD POSITIVE (short HFP)
  2046  	op_LPGFR   uint32 = 0xB910 // FORMAT_RRE        LOAD POSITIVE (64<-32)
  2047  	op_LPGR    uint32 = 0xB900 // FORMAT_RRE        LOAD POSITIVE (64)
  2048  	op_LPQ     uint32 = 0xE38F // FORMAT_RXY1       LOAD PAIR FROM QUADWORD
  2049  	op_LPR     uint32 = 0x1000 // FORMAT_RR         LOAD POSITIVE (32)
  2050  	op_LPSW    uint32 = 0x8200 // FORMAT_S          LOAD PSW
  2051  	op_LPSWE   uint32 = 0xB2B2 // FORMAT_S          LOAD PSW EXTENDED
  2052  	op_LPTEA   uint32 = 0xB9AA // FORMAT_RRF2       LOAD PAGE TABLE ENTRY ADDRESS
  2053  	op_LPXBR   uint32 = 0xB340 // FORMAT_RRE        LOAD POSITIVE (extended BFP)
  2054  	op_LPXR    uint32 = 0xB360 // FORMAT_RRE        LOAD POSITIVE (extended HFP)
  2055  	op_LR      uint32 = 0x1800 // FORMAT_RR         LOAD (32)
  2056  	op_LRA     uint32 = 0xB100 // FORMAT_RX1        LOAD REAL ADDRESS (32)
  2057  	op_LRAG    uint32 = 0xE303 // FORMAT_RXY1       LOAD REAL ADDRESS (64)
  2058  	op_LRAY    uint32 = 0xE313 // FORMAT_RXY1       LOAD REAL ADDRESS (32)
  2059  	op_LRDR    uint32 = 0x2500 // FORMAT_RR         LOAD ROUNDED (extended to long HFP)
  2060  	op_LRER    uint32 = 0x3500 // FORMAT_RR         LOAD ROUNDED (long to short HFP)
  2061  	op_LRL     uint32 = 0xC40D // FORMAT_RIL2       LOAD RELATIVE LONG (32)
  2062  	op_LRV     uint32 = 0xE31E // FORMAT_RXY1       LOAD REVERSED (32)
  2063  	op_LRVG    uint32 = 0xE30F // FORMAT_RXY1       LOAD REVERSED (64)
  2064  	op_LRVGR   uint32 = 0xB90F // FORMAT_RRE        LOAD REVERSED (64)
  2065  	op_LRVH    uint32 = 0xE31F // FORMAT_RXY1       LOAD REVERSED (16)
  2066  	op_LRVR    uint32 = 0xB91F // FORMAT_RRE        LOAD REVERSED (32)
  2067  	op_LT      uint32 = 0xE312 // FORMAT_RXY1       LOAD AND TEST (32)
  2068  	op_LTDBR   uint32 = 0xB312 // FORMAT_RRE        LOAD AND TEST (long BFP)
  2069  	op_LTDR    uint32 = 0x2200 // FORMAT_RR         LOAD AND TEST (long HFP)
  2070  	op_LTDTR   uint32 = 0xB3D6 // FORMAT_RRE        LOAD AND TEST (long DFP)
  2071  	op_LTEBR   uint32 = 0xB302 // FORMAT_RRE        LOAD AND TEST (short BFP)
  2072  	op_LTER    uint32 = 0x3200 // FORMAT_RR         LOAD AND TEST (short HFP)
  2073  	op_LTG     uint32 = 0xE302 // FORMAT_RXY1       LOAD AND TEST (64)
  2074  	op_LTGF    uint32 = 0xE332 // FORMAT_RXY1       LOAD AND TEST (64<-32)
  2075  	op_LTGFR   uint32 = 0xB912 // FORMAT_RRE        LOAD AND TEST (64<-32)
  2076  	op_LTGR    uint32 = 0xB902 // FORMAT_RRE        LOAD AND TEST (64)
  2077  	op_LTR     uint32 = 0x1200 // FORMAT_RR         LOAD AND TEST (32)
  2078  	op_LTXBR   uint32 = 0xB342 // FORMAT_RRE        LOAD AND TEST (extended BFP)
  2079  	op_LTXR    uint32 = 0xB362 // FORMAT_RRE        LOAD AND TEST (extended HFP)
  2080  	op_LTXTR   uint32 = 0xB3DE // FORMAT_RRE        LOAD AND TEST (extended DFP)
  2081  	op_LURA    uint32 = 0xB24B // FORMAT_RRE        LOAD USING REAL ADDRESS (32)
  2082  	op_LURAG   uint32 = 0xB905 // FORMAT_RRE        LOAD USING REAL ADDRESS (64)
  2083  	op_LXD     uint32 = 0xED25 // FORMAT_RXE        LOAD LENGTHENED (long to extended HFP)
  2084  	op_LXDB    uint32 = 0xED05 // FORMAT_RXE        LOAD LENGTHENED (long to extended BFP)
  2085  	op_LXDBR   uint32 = 0xB305 // FORMAT_RRE        LOAD LENGTHENED (long to extended BFP)
  2086  	op_LXDR    uint32 = 0xB325 // FORMAT_RRE        LOAD LENGTHENED (long to extended HFP)
  2087  	op_LXDTR   uint32 = 0xB3DC // FORMAT_RRF4       LOAD LENGTHENED (long to extended DFP)
  2088  	op_LXE     uint32 = 0xED26 // FORMAT_RXE        LOAD LENGTHENED (short to extended HFP)
  2089  	op_LXEB    uint32 = 0xED06 // FORMAT_RXE        LOAD LENGTHENED (short to extended BFP)
  2090  	op_LXEBR   uint32 = 0xB306 // FORMAT_RRE        LOAD LENGTHENED (short to extended BFP)
  2091  	op_LXER    uint32 = 0xB326 // FORMAT_RRE        LOAD LENGTHENED (short to extended HFP)
  2092  	op_LXR     uint32 = 0xB365 // FORMAT_RRE        LOAD (extended)
  2093  	op_LY      uint32 = 0xE358 // FORMAT_RXY1       LOAD (32)
  2094  	op_LZDR    uint32 = 0xB375 // FORMAT_RRE        LOAD ZERO (long)
  2095  	op_LZER    uint32 = 0xB374 // FORMAT_RRE        LOAD ZERO (short)
  2096  	op_LZXR    uint32 = 0xB376 // FORMAT_RRE        LOAD ZERO (extended)
  2097  	op_M       uint32 = 0x5C00 // FORMAT_RX1        MULTIPLY (64<-32)
  2098  	op_MAD     uint32 = 0xED3E // FORMAT_RXF        MULTIPLY AND ADD (long HFP)
  2099  	op_MADB    uint32 = 0xED1E // FORMAT_RXF        MULTIPLY AND ADD (long BFP)
  2100  	op_MADBR   uint32 = 0xB31E // FORMAT_RRD        MULTIPLY AND ADD (long BFP)
  2101  	op_MADR    uint32 = 0xB33E // FORMAT_RRD        MULTIPLY AND ADD (long HFP)
  2102  	op_MAE     uint32 = 0xED2E // FORMAT_RXF        MULTIPLY AND ADD (short HFP)
  2103  	op_MAEB    uint32 = 0xED0E // FORMAT_RXF        MULTIPLY AND ADD (short BFP)
  2104  	op_MAEBR   uint32 = 0xB30E // FORMAT_RRD        MULTIPLY AND ADD (short BFP)
  2105  	op_MAER    uint32 = 0xB32E // FORMAT_RRD        MULTIPLY AND ADD (short HFP)
  2106  	op_MAY     uint32 = 0xED3A // FORMAT_RXF        MULTIPLY & ADD UNNORMALIZED (long to ext. HFP)
  2107  	op_MAYH    uint32 = 0xED3C // FORMAT_RXF        MULTIPLY AND ADD UNNRM. (long to ext. high HFP)
  2108  	op_MAYHR   uint32 = 0xB33C // FORMAT_RRD        MULTIPLY AND ADD UNNRM. (long to ext. high HFP)
  2109  	op_MAYL    uint32 = 0xED38 // FORMAT_RXF        MULTIPLY AND ADD UNNRM. (long to ext. low HFP)
  2110  	op_MAYLR   uint32 = 0xB338 // FORMAT_RRD        MULTIPLY AND ADD UNNRM. (long to ext. low HFP)
  2111  	op_MAYR    uint32 = 0xB33A // FORMAT_RRD        MULTIPLY & ADD UNNORMALIZED (long to ext. HFP)
  2112  	op_MC      uint32 = 0xAF00 // FORMAT_SI         MONITOR CALL
  2113  	op_MD      uint32 = 0x6C00 // FORMAT_RX1        MULTIPLY (long HFP)
  2114  	op_MDB     uint32 = 0xED1C // FORMAT_RXE        MULTIPLY (long BFP)
  2115  	op_MDBR    uint32 = 0xB31C // FORMAT_RRE        MULTIPLY (long BFP)
  2116  	op_MDE     uint32 = 0x7C00 // FORMAT_RX1        MULTIPLY (short to long HFP)
  2117  	op_MDEB    uint32 = 0xED0C // FORMAT_RXE        MULTIPLY (short to long BFP)
  2118  	op_MDEBR   uint32 = 0xB30C // FORMAT_RRE        MULTIPLY (short to long BFP)
  2119  	op_MDER    uint32 = 0x3C00 // FORMAT_RR         MULTIPLY (short to long HFP)
  2120  	op_MDR     uint32 = 0x2C00 // FORMAT_RR         MULTIPLY (long HFP)
  2121  	op_MDTR    uint32 = 0xB3D0 // FORMAT_RRF1       MULTIPLY (long DFP)
  2122  	op_MDTRA   uint32 = 0xB3D0 // FORMAT_RRF1       MULTIPLY (long DFP)
  2123  	op_ME      uint32 = 0x7C00 // FORMAT_RX1        MULTIPLY (short to long HFP)
  2124  	op_MEE     uint32 = 0xED37 // FORMAT_RXE        MULTIPLY (short HFP)
  2125  	op_MEEB    uint32 = 0xED17 // FORMAT_RXE        MULTIPLY (short BFP)
  2126  	op_MEEBR   uint32 = 0xB317 // FORMAT_RRE        MULTIPLY (short BFP)
  2127  	op_MEER    uint32 = 0xB337 // FORMAT_RRE        MULTIPLY (short HFP)
  2128  	op_MER     uint32 = 0x3C00 // FORMAT_RR         MULTIPLY (short to long HFP)
  2129  	op_MFY     uint32 = 0xE35C // FORMAT_RXY1       MULTIPLY (64<-32)
  2130  	op_MGHI    uint32 = 0xA70D // FORMAT_RI1        MULTIPLY HALFWORD IMMEDIATE (64)
  2131  	op_MH      uint32 = 0x4C00 // FORMAT_RX1        MULTIPLY HALFWORD (32)
  2132  	op_MHI     uint32 = 0xA70C // FORMAT_RI1        MULTIPLY HALFWORD IMMEDIATE (32)
  2133  	op_MHY     uint32 = 0xE37C // FORMAT_RXY1       MULTIPLY HALFWORD (32)
  2134  	op_ML      uint32 = 0xE396 // FORMAT_RXY1       MULTIPLY LOGICAL (64<-32)
  2135  	op_MLG     uint32 = 0xE386 // FORMAT_RXY1       MULTIPLY LOGICAL (128<-64)
  2136  	op_MLGR    uint32 = 0xB986 // FORMAT_RRE        MULTIPLY LOGICAL (128<-64)
  2137  	op_MLR     uint32 = 0xB996 // FORMAT_RRE        MULTIPLY LOGICAL (64<-32)
  2138  	op_MP      uint32 = 0xFC00 // FORMAT_SS2        MULTIPLY DECIMAL
  2139  	op_MR      uint32 = 0x1C00 // FORMAT_RR         MULTIPLY (64<-32)
  2140  	op_MS      uint32 = 0x7100 // FORMAT_RX1        MULTIPLY SINGLE (32)
  2141  	op_MSCH    uint32 = 0xB232 // FORMAT_S          MODIFY SUBCHANNEL
  2142  	op_MSD     uint32 = 0xED3F // FORMAT_RXF        MULTIPLY AND SUBTRACT (long HFP)
  2143  	op_MSDB    uint32 = 0xED1F // FORMAT_RXF        MULTIPLY AND SUBTRACT (long BFP)
  2144  	op_MSDBR   uint32 = 0xB31F // FORMAT_RRD        MULTIPLY AND SUBTRACT (long BFP)
  2145  	op_MSDR    uint32 = 0xB33F // FORMAT_RRD        MULTIPLY AND SUBTRACT (long HFP)
  2146  	op_MSE     uint32 = 0xED2F // FORMAT_RXF        MULTIPLY AND SUBTRACT (short HFP)
  2147  	op_MSEB    uint32 = 0xED0F // FORMAT_RXF        MULTIPLY AND SUBTRACT (short BFP)
  2148  	op_MSEBR   uint32 = 0xB30F // FORMAT_RRD        MULTIPLY AND SUBTRACT (short BFP)
  2149  	op_MSER    uint32 = 0xB32F // FORMAT_RRD        MULTIPLY AND SUBTRACT (short HFP)
  2150  	op_MSFI    uint32 = 0xC201 // FORMAT_RIL1       MULTIPLY SINGLE IMMEDIATE (32)
  2151  	op_MSG     uint32 = 0xE30C // FORMAT_RXY1       MULTIPLY SINGLE (64)
  2152  	op_MSGF    uint32 = 0xE31C // FORMAT_RXY1       MULTIPLY SINGLE (64<-32)
  2153  	op_MSGFI   uint32 = 0xC200 // FORMAT_RIL1       MULTIPLY SINGLE IMMEDIATE (64<-32)
  2154  	op_MSGFR   uint32 = 0xB91C // FORMAT_RRE        MULTIPLY SINGLE (64<-32)
  2155  	op_MSGR    uint32 = 0xB90C // FORMAT_RRE        MULTIPLY SINGLE (64)
  2156  	op_MSR     uint32 = 0xB252 // FORMAT_RRE        MULTIPLY SINGLE (32)
  2157  	op_MSTA    uint32 = 0xB247 // FORMAT_RRE        MODIFY STACKED STATE
  2158  	op_MSY     uint32 = 0xE351 // FORMAT_RXY1       MULTIPLY SINGLE (32)
  2159  	op_MVC     uint32 = 0xD200 // FORMAT_SS1        MOVE (character)
  2160  	op_MVCDK   uint32 = 0xE50F // FORMAT_SSE        MOVE WITH DESTINATION KEY
  2161  	op_MVCIN   uint32 = 0xE800 // FORMAT_SS1        MOVE INVERSE
  2162  	op_MVCK    uint32 = 0xD900 // FORMAT_SS4        MOVE WITH KEY
  2163  	op_MVCL    uint32 = 0x0E00 // FORMAT_RR         MOVE LONG
  2164  	op_MVCLE   uint32 = 0xA800 // FORMAT_RS1        MOVE LONG EXTENDED
  2165  	op_MVCLU   uint32 = 0xEB8E // FORMAT_RSY1       MOVE LONG UNICODE
  2166  	op_MVCOS   uint32 = 0xC800 // FORMAT_SSF        MOVE WITH OPTIONAL SPECIFICATIONS
  2167  	op_MVCP    uint32 = 0xDA00 // FORMAT_SS4        MOVE TO PRIMARY
  2168  	op_MVCS    uint32 = 0xDB00 // FORMAT_SS4        MOVE TO SECONDARY
  2169  	op_MVCSK   uint32 = 0xE50E // FORMAT_SSE        MOVE WITH SOURCE KEY
  2170  	op_MVGHI   uint32 = 0xE548 // FORMAT_SIL        MOVE (64<-16)
  2171  	op_MVHHI   uint32 = 0xE544 // FORMAT_SIL        MOVE (16<-16)
  2172  	op_MVHI    uint32 = 0xE54C // FORMAT_SIL        MOVE (32<-16)
  2173  	op_MVI     uint32 = 0x9200 // FORMAT_SI         MOVE (immediate)
  2174  	op_MVIY    uint32 = 0xEB52 // FORMAT_SIY        MOVE (immediate)
  2175  	op_MVN     uint32 = 0xD100 // FORMAT_SS1        MOVE NUMERICS
  2176  	op_MVO     uint32 = 0xF100 // FORMAT_SS2        MOVE WITH OFFSET
  2177  	op_MVPG    uint32 = 0xB254 // FORMAT_RRE        MOVE PAGE
  2178  	op_MVST    uint32 = 0xB255 // FORMAT_RRE        MOVE STRING
  2179  	op_MVZ     uint32 = 0xD300 // FORMAT_SS1        MOVE ZONES
  2180  	op_MXBR    uint32 = 0xB34C // FORMAT_RRE        MULTIPLY (extended BFP)
  2181  	op_MXD     uint32 = 0x6700 // FORMAT_RX1        MULTIPLY (long to extended HFP)
  2182  	op_MXDB    uint32 = 0xED07 // FORMAT_RXE        MULTIPLY (long to extended BFP)
  2183  	op_MXDBR   uint32 = 0xB307 // FORMAT_RRE        MULTIPLY (long to extended BFP)
  2184  	op_MXDR    uint32 = 0x2700 // FORMAT_RR         MULTIPLY (long to extended HFP)
  2185  	op_MXR     uint32 = 0x2600 // FORMAT_RR         MULTIPLY (extended HFP)
  2186  	op_MXTR    uint32 = 0xB3D8 // FORMAT_RRF1       MULTIPLY (extended DFP)
  2187  	op_MXTRA   uint32 = 0xB3D8 // FORMAT_RRF1       MULTIPLY (extended DFP)
  2188  	op_MY      uint32 = 0xED3B // FORMAT_RXF        MULTIPLY UNNORMALIZED (long to ext. HFP)
  2189  	op_MYH     uint32 = 0xED3D // FORMAT_RXF        MULTIPLY UNNORM. (long to ext. high HFP)
  2190  	op_MYHR    uint32 = 0xB33D // FORMAT_RRD        MULTIPLY UNNORM. (long to ext. high HFP)
  2191  	op_MYL     uint32 = 0xED39 // FORMAT_RXF        MULTIPLY UNNORM. (long to ext. low HFP)
  2192  	op_MYLR    uint32 = 0xB339 // FORMAT_RRD        MULTIPLY UNNORM. (long to ext. low HFP)
  2193  	op_MYR     uint32 = 0xB33B // FORMAT_RRD        MULTIPLY UNNORMALIZED (long to ext. HFP)
  2194  	op_N       uint32 = 0x5400 // FORMAT_RX1        AND (32)
  2195  	op_NC      uint32 = 0xD400 // FORMAT_SS1        AND (character)
  2196  	op_NG      uint32 = 0xE380 // FORMAT_RXY1       AND (64)
  2197  	op_NGR     uint32 = 0xB980 // FORMAT_RRE        AND (64)
  2198  	op_NGRK    uint32 = 0xB9E4 // FORMAT_RRF1       AND (64)
  2199  	op_NI      uint32 = 0x9400 // FORMAT_SI         AND (immediate)
  2200  	op_NIAI    uint32 = 0xB2FA // FORMAT_IE         NEXT INSTRUCTION ACCESS INTENT
  2201  	op_NIHF    uint32 = 0xC00A // FORMAT_RIL1       AND IMMEDIATE (high)
  2202  	op_NIHH    uint32 = 0xA504 // FORMAT_RI1        AND IMMEDIATE (high high)
  2203  	op_NIHL    uint32 = 0xA505 // FORMAT_RI1        AND IMMEDIATE (high low)
  2204  	op_NILF    uint32 = 0xC00B // FORMAT_RIL1       AND IMMEDIATE (low)
  2205  	op_NILH    uint32 = 0xA506 // FORMAT_RI1        AND IMMEDIATE (low high)
  2206  	op_NILL    uint32 = 0xA507 // FORMAT_RI1        AND IMMEDIATE (low low)
  2207  	op_NIY     uint32 = 0xEB54 // FORMAT_SIY        AND (immediate)
  2208  	op_NR      uint32 = 0x1400 // FORMAT_RR         AND (32)
  2209  	op_NRK     uint32 = 0xB9F4 // FORMAT_RRF1       AND (32)
  2210  	op_NTSTG   uint32 = 0xE325 // FORMAT_RXY1       NONTRANSACTIONAL STORE
  2211  	op_NY      uint32 = 0xE354 // FORMAT_RXY1       AND (32)
  2212  	op_O       uint32 = 0x5600 // FORMAT_RX1        OR (32)
  2213  	op_OC      uint32 = 0xD600 // FORMAT_SS1        OR (character)
  2214  	op_OG      uint32 = 0xE381 // FORMAT_RXY1       OR (64)
  2215  	op_OGR     uint32 = 0xB981 // FORMAT_RRE        OR (64)
  2216  	op_OGRK    uint32 = 0xB9E6 // FORMAT_RRF1       OR (64)
  2217  	op_OI      uint32 = 0x9600 // FORMAT_SI         OR (immediate)
  2218  	op_OIHF    uint32 = 0xC00C // FORMAT_RIL1       OR IMMEDIATE (high)
  2219  	op_OIHH    uint32 = 0xA508 // FORMAT_RI1        OR IMMEDIATE (high high)
  2220  	op_OIHL    uint32 = 0xA509 // FORMAT_RI1        OR IMMEDIATE (high low)
  2221  	op_OILF    uint32 = 0xC00D // FORMAT_RIL1       OR IMMEDIATE (low)
  2222  	op_OILH    uint32 = 0xA50A // FORMAT_RI1        OR IMMEDIATE (low high)
  2223  	op_OILL    uint32 = 0xA50B // FORMAT_RI1        OR IMMEDIATE (low low)
  2224  	op_OIY     uint32 = 0xEB56 // FORMAT_SIY        OR (immediate)
  2225  	op_OR      uint32 = 0x1600 // FORMAT_RR         OR (32)
  2226  	op_ORK     uint32 = 0xB9F6 // FORMAT_RRF1       OR (32)
  2227  	op_OY      uint32 = 0xE356 // FORMAT_RXY1       OR (32)
  2228  	op_PACK    uint32 = 0xF200 // FORMAT_SS2        PACK
  2229  	op_PALB    uint32 = 0xB248 // FORMAT_RRE        PURGE ALB
  2230  	op_PC      uint32 = 0xB218 // FORMAT_S          PROGRAM CALL
  2231  	op_PCC     uint32 = 0xB92C // FORMAT_RRE        PERFORM CRYPTOGRAPHIC COMPUTATION
  2232  	op_PCKMO   uint32 = 0xB928 // FORMAT_RRE        PERFORM CRYPTOGRAPHIC KEY MGMT. OPERATIONS
  2233  	op_PFD     uint32 = 0xE336 // FORMAT_RXY2       PREFETCH DATA
  2234  	op_PFDRL   uint32 = 0xC602 // FORMAT_RIL3       PREFETCH DATA RELATIVE LONG
  2235  	op_PFMF    uint32 = 0xB9AF // FORMAT_RRE        PERFORM FRAME MANAGEMENT FUNCTION
  2236  	op_PFPO    uint32 = 0x010A // FORMAT_E          PERFORM FLOATING-POINT OPERATION
  2237  	op_PGIN    uint32 = 0xB22E // FORMAT_RRE        PAGE IN
  2238  	op_PGOUT   uint32 = 0xB22F // FORMAT_RRE        PAGE OUT
  2239  	op_PKA     uint32 = 0xE900 // FORMAT_SS6        PACK ASCII
  2240  	op_PKU     uint32 = 0xE100 // FORMAT_SS6        PACK UNICODE
  2241  	op_PLO     uint32 = 0xEE00 // FORMAT_SS5        PERFORM LOCKED OPERATION
  2242  	op_POPCNT  uint32 = 0xB9E1 // FORMAT_RRE        POPULATION COUNT
  2243  	op_PPA     uint32 = 0xB2E8 // FORMAT_RRF3       PERFORM PROCESSOR ASSIST
  2244  	op_PR      uint32 = 0x0101 // FORMAT_E          PROGRAM RETURN
  2245  	op_PT      uint32 = 0xB228 // FORMAT_RRE        PROGRAM TRANSFER
  2246  	op_PTF     uint32 = 0xB9A2 // FORMAT_RRE        PERFORM TOPOLOGY FUNCTION
  2247  	op_PTFF    uint32 = 0x0104 // FORMAT_E          PERFORM TIMING FACILITY FUNCTION
  2248  	op_PTI     uint32 = 0xB99E // FORMAT_RRE        PROGRAM TRANSFER WITH INSTANCE
  2249  	op_PTLB    uint32 = 0xB20D // FORMAT_S          PURGE TLB
  2250  	op_QADTR   uint32 = 0xB3F5 // FORMAT_RRF2       QUANTIZE (long DFP)
  2251  	op_QAXTR   uint32 = 0xB3FD // FORMAT_RRF2       QUANTIZE (extended DFP)
  2252  	op_RCHP    uint32 = 0xB23B // FORMAT_S          RESET CHANNEL PATH
  2253  	op_RISBG   uint32 = 0xEC55 // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS
  2254  	op_RISBGN  uint32 = 0xEC59 // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS
  2255  	op_RISBHG  uint32 = 0xEC5D // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS HIGH
  2256  	op_RISBLG  uint32 = 0xEC51 // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS LOW
  2257  	op_RLL     uint32 = 0xEB1D // FORMAT_RSY1       ROTATE LEFT SINGLE LOGICAL (32)
  2258  	op_RLLG    uint32 = 0xEB1C // FORMAT_RSY1       ROTATE LEFT SINGLE LOGICAL (64)
  2259  	op_RNSBG   uint32 = 0xEC54 // FORMAT_RIE6       ROTATE THEN AND SELECTED BITS
  2260  	op_ROSBG   uint32 = 0xEC56 // FORMAT_RIE6       ROTATE THEN OR SELECTED BITS
  2261  	op_RP      uint32 = 0xB277 // FORMAT_S          RESUME PROGRAM
  2262  	op_RRBE    uint32 = 0xB22A // FORMAT_RRE        RESET REFERENCE BIT EXTENDED
  2263  	op_RRBM    uint32 = 0xB9AE // FORMAT_RRE        RESET REFERENCE BITS MULTIPLE
  2264  	op_RRDTR   uint32 = 0xB3F7 // FORMAT_RRF2       REROUND (long DFP)
  2265  	op_RRXTR   uint32 = 0xB3FF // FORMAT_RRF2       REROUND (extended DFP)
  2266  	op_RSCH    uint32 = 0xB238 // FORMAT_S          RESUME SUBCHANNEL
  2267  	op_RXSBG   uint32 = 0xEC57 // FORMAT_RIE6       ROTATE THEN EXCLUSIVE OR SELECTED BITS
  2268  	op_S       uint32 = 0x5B00 // FORMAT_RX1        SUBTRACT (32)
  2269  	op_SAC     uint32 = 0xB219 // FORMAT_S          SET ADDRESS SPACE CONTROL
  2270  	op_SACF    uint32 = 0xB279 // FORMAT_S          SET ADDRESS SPACE CONTROL FAST
  2271  	op_SAL     uint32 = 0xB237 // FORMAT_S          SET ADDRESS LIMIT
  2272  	op_SAM24   uint32 = 0x010C // FORMAT_E          SET ADDRESSING MODE (24)
  2273  	op_SAM31   uint32 = 0x010D // FORMAT_E          SET ADDRESSING MODE (31)
  2274  	op_SAM64   uint32 = 0x010E // FORMAT_E          SET ADDRESSING MODE (64)
  2275  	op_SAR     uint32 = 0xB24E // FORMAT_RRE        SET ACCESS
  2276  	op_SCHM    uint32 = 0xB23C // FORMAT_S          SET CHANNEL MONITOR
  2277  	op_SCK     uint32 = 0xB204 // FORMAT_S          SET CLOCK
  2278  	op_SCKC    uint32 = 0xB206 // FORMAT_S          SET CLOCK COMPARATOR
  2279  	op_SCKPF   uint32 = 0x0107 // FORMAT_E          SET CLOCK PROGRAMMABLE FIELD
  2280  	op_SD      uint32 = 0x6B00 // FORMAT_RX1        SUBTRACT NORMALIZED (long HFP)
  2281  	op_SDB     uint32 = 0xED1B // FORMAT_RXE        SUBTRACT (long BFP)
  2282  	op_SDBR    uint32 = 0xB31B // FORMAT_RRE        SUBTRACT (long BFP)
  2283  	op_SDR     uint32 = 0x2B00 // FORMAT_RR         SUBTRACT NORMALIZED (long HFP)
  2284  	op_SDTR    uint32 = 0xB3D3 // FORMAT_RRF1       SUBTRACT (long DFP)
  2285  	op_SDTRA   uint32 = 0xB3D3 // FORMAT_RRF1       SUBTRACT (long DFP)
  2286  	op_SE      uint32 = 0x7B00 // FORMAT_RX1        SUBTRACT NORMALIZED (short HFP)
  2287  	op_SEB     uint32 = 0xED0B // FORMAT_RXE        SUBTRACT (short BFP)
  2288  	op_SEBR    uint32 = 0xB30B // FORMAT_RRE        SUBTRACT (short BFP)
  2289  	op_SER     uint32 = 0x3B00 // FORMAT_RR         SUBTRACT NORMALIZED (short HFP)
  2290  	op_SFASR   uint32 = 0xB385 // FORMAT_RRE        SET FPC AND SIGNAL
  2291  	op_SFPC    uint32 = 0xB384 // FORMAT_RRE        SET FPC
  2292  	op_SG      uint32 = 0xE309 // FORMAT_RXY1       SUBTRACT (64)
  2293  	op_SGF     uint32 = 0xE319 // FORMAT_RXY1       SUBTRACT (64<-32)
  2294  	op_SGFR    uint32 = 0xB919 // FORMAT_RRE        SUBTRACT (64<-32)
  2295  	op_SGR     uint32 = 0xB909 // FORMAT_RRE        SUBTRACT (64)
  2296  	op_SGRK    uint32 = 0xB9E9 // FORMAT_RRF1       SUBTRACT (64)
  2297  	op_SH      uint32 = 0x4B00 // FORMAT_RX1        SUBTRACT HALFWORD
  2298  	op_SHHHR   uint32 = 0xB9C9 // FORMAT_RRF1       SUBTRACT HIGH (32)
  2299  	op_SHHLR   uint32 = 0xB9D9 // FORMAT_RRF1       SUBTRACT HIGH (32)
  2300  	op_SHY     uint32 = 0xE37B // FORMAT_RXY1       SUBTRACT HALFWORD
  2301  	op_SIGP    uint32 = 0xAE00 // FORMAT_RS1        SIGNAL PROCESSOR
  2302  	op_SL      uint32 = 0x5F00 // FORMAT_RX1        SUBTRACT LOGICAL (32)
  2303  	op_SLA     uint32 = 0x8B00 // FORMAT_RS1        SHIFT LEFT SINGLE (32)
  2304  	op_SLAG    uint32 = 0xEB0B // FORMAT_RSY1       SHIFT LEFT SINGLE (64)
  2305  	op_SLAK    uint32 = 0xEBDD // FORMAT_RSY1       SHIFT LEFT SINGLE (32)
  2306  	op_SLB     uint32 = 0xE399 // FORMAT_RXY1       SUBTRACT LOGICAL WITH BORROW (32)
  2307  	op_SLBG    uint32 = 0xE389 // FORMAT_RXY1       SUBTRACT LOGICAL WITH BORROW (64)
  2308  	op_SLBGR   uint32 = 0xB989 // FORMAT_RRE        SUBTRACT LOGICAL WITH BORROW (64)
  2309  	op_SLBR    uint32 = 0xB999 // FORMAT_RRE        SUBTRACT LOGICAL WITH BORROW (32)
  2310  	op_SLDA    uint32 = 0x8F00 // FORMAT_RS1        SHIFT LEFT DOUBLE
  2311  	op_SLDL    uint32 = 0x8D00 // FORMAT_RS1        SHIFT LEFT DOUBLE LOGICAL
  2312  	op_SLDT    uint32 = 0xED40 // FORMAT_RXF        SHIFT SIGNIFICAND LEFT (long DFP)
  2313  	op_SLFI    uint32 = 0xC205 // FORMAT_RIL1       SUBTRACT LOGICAL IMMEDIATE (32)
  2314  	op_SLG     uint32 = 0xE30B // FORMAT_RXY1       SUBTRACT LOGICAL (64)
  2315  	op_SLGF    uint32 = 0xE31B // FORMAT_RXY1       SUBTRACT LOGICAL (64<-32)
  2316  	op_SLGFI   uint32 = 0xC204 // FORMAT_RIL1       SUBTRACT LOGICAL IMMEDIATE (64<-32)
  2317  	op_SLGFR   uint32 = 0xB91B // FORMAT_RRE        SUBTRACT LOGICAL (64<-32)
  2318  	op_SLGR    uint32 = 0xB90B // FORMAT_RRE        SUBTRACT LOGICAL (64)
  2319  	op_SLGRK   uint32 = 0xB9EB // FORMAT_RRF1       SUBTRACT LOGICAL (64)
  2320  	op_SLHHHR  uint32 = 0xB9CB // FORMAT_RRF1       SUBTRACT LOGICAL HIGH (32)
  2321  	op_SLHHLR  uint32 = 0xB9DB // FORMAT_RRF1       SUBTRACT LOGICAL HIGH (32)
  2322  	op_SLL     uint32 = 0x8900 // FORMAT_RS1        SHIFT LEFT SINGLE LOGICAL (32)
  2323  	op_SLLG    uint32 = 0xEB0D // FORMAT_RSY1       SHIFT LEFT SINGLE LOGICAL (64)
  2324  	op_SLLK    uint32 = 0xEBDF // FORMAT_RSY1       SHIFT LEFT SINGLE LOGICAL (32)
  2325  	op_SLR     uint32 = 0x1F00 // FORMAT_RR         SUBTRACT LOGICAL (32)
  2326  	op_SLRK    uint32 = 0xB9FB // FORMAT_RRF1       SUBTRACT LOGICAL (32)
  2327  	op_SLXT    uint32 = 0xED48 // FORMAT_RXF        SHIFT SIGNIFICAND LEFT (extended DFP)
  2328  	op_SLY     uint32 = 0xE35F // FORMAT_RXY1       SUBTRACT LOGICAL (32)
  2329  	op_SP      uint32 = 0xFB00 // FORMAT_SS2        SUBTRACT DECIMAL
  2330  	op_SPKA    uint32 = 0xB20A // FORMAT_S          SET PSW KEY FROM ADDRESS
  2331  	op_SPM     uint32 = 0x0400 // FORMAT_RR         SET PROGRAM MASK
  2332  	op_SPT     uint32 = 0xB208 // FORMAT_S          SET CPU TIMER
  2333  	op_SPX     uint32 = 0xB210 // FORMAT_S          SET PREFIX
  2334  	op_SQD     uint32 = 0xED35 // FORMAT_RXE        SQUARE ROOT (long HFP)
  2335  	op_SQDB    uint32 = 0xED15 // FORMAT_RXE        SQUARE ROOT (long BFP)
  2336  	op_SQDBR   uint32 = 0xB315 // FORMAT_RRE        SQUARE ROOT (long BFP)
  2337  	op_SQDR    uint32 = 0xB244 // FORMAT_RRE        SQUARE ROOT (long HFP)
  2338  	op_SQE     uint32 = 0xED34 // FORMAT_RXE        SQUARE ROOT (short HFP)
  2339  	op_SQEB    uint32 = 0xED14 // FORMAT_RXE        SQUARE ROOT (short BFP)
  2340  	op_SQEBR   uint32 = 0xB314 // FORMAT_RRE        SQUARE ROOT (short BFP)
  2341  	op_SQER    uint32 = 0xB245 // FORMAT_RRE        SQUARE ROOT (short HFP)
  2342  	op_SQXBR   uint32 = 0xB316 // FORMAT_RRE        SQUARE ROOT (extended BFP)
  2343  	op_SQXR    uint32 = 0xB336 // FORMAT_RRE        SQUARE ROOT (extended HFP)
  2344  	op_SR      uint32 = 0x1B00 // FORMAT_RR         SUBTRACT (32)
  2345  	op_SRA     uint32 = 0x8A00 // FORMAT_RS1        SHIFT RIGHT SINGLE (32)
  2346  	op_SRAG    uint32 = 0xEB0A // FORMAT_RSY1       SHIFT RIGHT SINGLE (64)
  2347  	op_SRAK    uint32 = 0xEBDC // FORMAT_RSY1       SHIFT RIGHT SINGLE (32)
  2348  	op_SRDA    uint32 = 0x8E00 // FORMAT_RS1        SHIFT RIGHT DOUBLE
  2349  	op_SRDL    uint32 = 0x8C00 // FORMAT_RS1        SHIFT RIGHT DOUBLE LOGICAL
  2350  	op_SRDT    uint32 = 0xED41 // FORMAT_RXF        SHIFT SIGNIFICAND RIGHT (long DFP)
  2351  	op_SRK     uint32 = 0xB9F9 // FORMAT_RRF1       SUBTRACT (32)
  2352  	op_SRL     uint32 = 0x8800 // FORMAT_RS1        SHIFT RIGHT SINGLE LOGICAL (32)
  2353  	op_SRLG    uint32 = 0xEB0C // FORMAT_RSY1       SHIFT RIGHT SINGLE LOGICAL (64)
  2354  	op_SRLK    uint32 = 0xEBDE // FORMAT_RSY1       SHIFT RIGHT SINGLE LOGICAL (32)
  2355  	op_SRNM    uint32 = 0xB299 // FORMAT_S          SET BFP ROUNDING MODE (2 bit)
  2356  	op_SRNMB   uint32 = 0xB2B8 // FORMAT_S          SET BFP ROUNDING MODE (3 bit)
  2357  	op_SRNMT   uint32 = 0xB2B9 // FORMAT_S          SET DFP ROUNDING MODE
  2358  	op_SRP     uint32 = 0xF000 // FORMAT_SS3        SHIFT AND ROUND DECIMAL
  2359  	op_SRST    uint32 = 0xB25E // FORMAT_RRE        SEARCH STRING
  2360  	op_SRSTU   uint32 = 0xB9BE // FORMAT_RRE        SEARCH STRING UNICODE
  2361  	op_SRXT    uint32 = 0xED49 // FORMAT_RXF        SHIFT SIGNIFICAND RIGHT (extended DFP)
  2362  	op_SSAIR   uint32 = 0xB99F // FORMAT_RRE        SET SECONDARY ASN WITH INSTANCE
  2363  	op_SSAR    uint32 = 0xB225 // FORMAT_RRE        SET SECONDARY ASN
  2364  	op_SSCH    uint32 = 0xB233 // FORMAT_S          START SUBCHANNEL
  2365  	op_SSKE    uint32 = 0xB22B // FORMAT_RRF3       SET STORAGE KEY EXTENDED
  2366  	op_SSM     uint32 = 0x8000 // FORMAT_S          SET SYSTEM MASK
  2367  	op_ST      uint32 = 0x5000 // FORMAT_RX1        STORE (32)
  2368  	op_STAM    uint32 = 0x9B00 // FORMAT_RS1        STORE ACCESS MULTIPLE
  2369  	op_STAMY   uint32 = 0xEB9B // FORMAT_RSY1       STORE ACCESS MULTIPLE
  2370  	op_STAP    uint32 = 0xB212 // FORMAT_S          STORE CPU ADDRESS
  2371  	op_STC     uint32 = 0x4200 // FORMAT_RX1        STORE CHARACTER
  2372  	op_STCH    uint32 = 0xE3C3 // FORMAT_RXY1       STORE CHARACTER HIGH (8)
  2373  	op_STCK    uint32 = 0xB205 // FORMAT_S          STORE CLOCK
  2374  	op_STCKC   uint32 = 0xB207 // FORMAT_S          STORE CLOCK COMPARATOR
  2375  	op_STCKE   uint32 = 0xB278 // FORMAT_S          STORE CLOCK EXTENDED
  2376  	op_STCKF   uint32 = 0xB27C // FORMAT_S          STORE CLOCK FAST
  2377  	op_STCM    uint32 = 0xBE00 // FORMAT_RS2        STORE CHARACTERS UNDER MASK (low)
  2378  	op_STCMH   uint32 = 0xEB2C // FORMAT_RSY2       STORE CHARACTERS UNDER MASK (high)
  2379  	op_STCMY   uint32 = 0xEB2D // FORMAT_RSY2       STORE CHARACTERS UNDER MASK (low)
  2380  	op_STCPS   uint32 = 0xB23A // FORMAT_S          STORE CHANNEL PATH STATUS
  2381  	op_STCRW   uint32 = 0xB239 // FORMAT_S          STORE CHANNEL REPORT WORD
  2382  	op_STCTG   uint32 = 0xEB25 // FORMAT_RSY1       STORE CONTROL (64)
  2383  	op_STCTL   uint32 = 0xB600 // FORMAT_RS1        STORE CONTROL (32)
  2384  	op_STCY    uint32 = 0xE372 // FORMAT_RXY1       STORE CHARACTER
  2385  	op_STD     uint32 = 0x6000 // FORMAT_RX1        STORE (long)
  2386  	op_STDY    uint32 = 0xED67 // FORMAT_RXY1       STORE (long)
  2387  	op_STE     uint32 = 0x7000 // FORMAT_RX1        STORE (short)
  2388  	op_STEY    uint32 = 0xED66 // FORMAT_RXY1       STORE (short)
  2389  	op_STFH    uint32 = 0xE3CB // FORMAT_RXY1       STORE HIGH (32)
  2390  	op_STFL    uint32 = 0xB2B1 // FORMAT_S          STORE FACILITY LIST
  2391  	op_STFLE   uint32 = 0xB2B0 // FORMAT_S          STORE FACILITY LIST EXTENDED
  2392  	op_STFPC   uint32 = 0xB29C // FORMAT_S          STORE FPC
  2393  	op_STG     uint32 = 0xE324 // FORMAT_RXY1       STORE (64)
  2394  	op_STGRL   uint32 = 0xC40B // FORMAT_RIL2       STORE RELATIVE LONG (64)
  2395  	op_STH     uint32 = 0x4000 // FORMAT_RX1        STORE HALFWORD
  2396  	op_STHH    uint32 = 0xE3C7 // FORMAT_RXY1       STORE HALFWORD HIGH (16)
  2397  	op_STHRL   uint32 = 0xC407 // FORMAT_RIL2       STORE HALFWORD RELATIVE LONG
  2398  	op_STHY    uint32 = 0xE370 // FORMAT_RXY1       STORE HALFWORD
  2399  	op_STIDP   uint32 = 0xB202 // FORMAT_S          STORE CPU ID
  2400  	op_STM     uint32 = 0x9000 // FORMAT_RS1        STORE MULTIPLE (32)
  2401  	op_STMG    uint32 = 0xEB24 // FORMAT_RSY1       STORE MULTIPLE (64)
  2402  	op_STMH    uint32 = 0xEB26 // FORMAT_RSY1       STORE MULTIPLE HIGH
  2403  	op_STMY    uint32 = 0xEB90 // FORMAT_RSY1       STORE MULTIPLE (32)
  2404  	op_STNSM   uint32 = 0xAC00 // FORMAT_SI         STORE THEN AND SYSTEM MASK
  2405  	op_STOC    uint32 = 0xEBF3 // FORMAT_RSY2       STORE ON CONDITION (32)
  2406  	op_STOCG   uint32 = 0xEBE3 // FORMAT_RSY2       STORE ON CONDITION (64)
  2407  	op_STOSM   uint32 = 0xAD00 // FORMAT_SI         STORE THEN OR SYSTEM MASK
  2408  	op_STPQ    uint32 = 0xE38E // FORMAT_RXY1       STORE PAIR TO QUADWORD
  2409  	op_STPT    uint32 = 0xB209 // FORMAT_S          STORE CPU TIMER
  2410  	op_STPX    uint32 = 0xB211 // FORMAT_S          STORE PREFIX
  2411  	op_STRAG   uint32 = 0xE502 // FORMAT_SSE        STORE REAL ADDRESS
  2412  	op_STRL    uint32 = 0xC40F // FORMAT_RIL2       STORE RELATIVE LONG (32)
  2413  	op_STRV    uint32 = 0xE33E // FORMAT_RXY1       STORE REVERSED (32)
  2414  	op_STRVG   uint32 = 0xE32F // FORMAT_RXY1       STORE REVERSED (64)
  2415  	op_STRVH   uint32 = 0xE33F // FORMAT_RXY1       STORE REVERSED (16)
  2416  	op_STSCH   uint32 = 0xB234 // FORMAT_S          STORE SUBCHANNEL
  2417  	op_STSI    uint32 = 0xB27D // FORMAT_S          STORE SYSTEM INFORMATION
  2418  	op_STURA   uint32 = 0xB246 // FORMAT_RRE        STORE USING REAL ADDRESS (32)
  2419  	op_STURG   uint32 = 0xB925 // FORMAT_RRE        STORE USING REAL ADDRESS (64)
  2420  	op_STY     uint32 = 0xE350 // FORMAT_RXY1       STORE (32)
  2421  	op_SU      uint32 = 0x7F00 // FORMAT_RX1        SUBTRACT UNNORMALIZED (short HFP)
  2422  	op_SUR     uint32 = 0x3F00 // FORMAT_RR         SUBTRACT UNNORMALIZED (short HFP)
  2423  	op_SVC     uint32 = 0x0A00 // FORMAT_I          SUPERVISOR CALL
  2424  	op_SW      uint32 = 0x6F00 // FORMAT_RX1        SUBTRACT UNNORMALIZED (long HFP)
  2425  	op_SWR     uint32 = 0x2F00 // FORMAT_RR         SUBTRACT UNNORMALIZED (long HFP)
  2426  	op_SXBR    uint32 = 0xB34B // FORMAT_RRE        SUBTRACT (extended BFP)
  2427  	op_SXR     uint32 = 0x3700 // FORMAT_RR         SUBTRACT NORMALIZED (extended HFP)
  2428  	op_SXTR    uint32 = 0xB3DB // FORMAT_RRF1       SUBTRACT (extended DFP)
  2429  	op_SXTRA   uint32 = 0xB3DB // FORMAT_RRF1       SUBTRACT (extended DFP)
  2430  	op_SY      uint32 = 0xE35B // FORMAT_RXY1       SUBTRACT (32)
  2431  	op_TABORT  uint32 = 0xB2FC // FORMAT_S          TRANSACTION ABORT
  2432  	op_TAM     uint32 = 0x010B // FORMAT_E          TEST ADDRESSING MODE
  2433  	op_TAR     uint32 = 0xB24C // FORMAT_RRE        TEST ACCESS
  2434  	op_TB      uint32 = 0xB22C // FORMAT_RRE        TEST BLOCK
  2435  	op_TBDR    uint32 = 0xB351 // FORMAT_RRF5       CONVERT HFP TO BFP (long)
  2436  	op_TBEDR   uint32 = 0xB350 // FORMAT_RRF5       CONVERT HFP TO BFP (long to short)
  2437  	op_TBEGIN  uint32 = 0xE560 // FORMAT_SIL        TRANSACTION BEGIN
  2438  	op_TBEGINC uint32 = 0xE561 // FORMAT_SIL        TRANSACTION BEGIN
  2439  	op_TCDB    uint32 = 0xED11 // FORMAT_RXE        TEST DATA CLASS (long BFP)
  2440  	op_TCEB    uint32 = 0xED10 // FORMAT_RXE        TEST DATA CLASS (short BFP)
  2441  	op_TCXB    uint32 = 0xED12 // FORMAT_RXE        TEST DATA CLASS (extended BFP)
  2442  	op_TDCDT   uint32 = 0xED54 // FORMAT_RXE        TEST DATA CLASS (long DFP)
  2443  	op_TDCET   uint32 = 0xED50 // FORMAT_RXE        TEST DATA CLASS (short DFP)
  2444  	op_TDCXT   uint32 = 0xED58 // FORMAT_RXE        TEST DATA CLASS (extended DFP)
  2445  	op_TDGDT   uint32 = 0xED55 // FORMAT_RXE        TEST DATA GROUP (long DFP)
  2446  	op_TDGET   uint32 = 0xED51 // FORMAT_RXE        TEST DATA GROUP (short DFP)
  2447  	op_TDGXT   uint32 = 0xED59 // FORMAT_RXE        TEST DATA GROUP (extended DFP)
  2448  	op_TEND    uint32 = 0xB2F8 // FORMAT_S          TRANSACTION END
  2449  	op_THDER   uint32 = 0xB358 // FORMAT_RRE        CONVERT BFP TO HFP (short to long)
  2450  	op_THDR    uint32 = 0xB359 // FORMAT_RRE        CONVERT BFP TO HFP (long)
  2451  	op_TM      uint32 = 0x9100 // FORMAT_SI         TEST UNDER MASK
  2452  	op_TMH     uint32 = 0xA700 // FORMAT_RI1        TEST UNDER MASK HIGH
  2453  	op_TMHH    uint32 = 0xA702 // FORMAT_RI1        TEST UNDER MASK (high high)
  2454  	op_TMHL    uint32 = 0xA703 // FORMAT_RI1        TEST UNDER MASK (high low)
  2455  	op_TML     uint32 = 0xA701 // FORMAT_RI1        TEST UNDER MASK LOW
  2456  	op_TMLH    uint32 = 0xA700 // FORMAT_RI1        TEST UNDER MASK (low high)
  2457  	op_TMLL    uint32 = 0xA701 // FORMAT_RI1        TEST UNDER MASK (low low)
  2458  	op_TMY     uint32 = 0xEB51 // FORMAT_SIY        TEST UNDER MASK
  2459  	op_TP      uint32 = 0xEBC0 // FORMAT_RSL        TEST DECIMAL
  2460  	op_TPI     uint32 = 0xB236 // FORMAT_S          TEST PENDING INTERRUPTION
  2461  	op_TPROT   uint32 = 0xE501 // FORMAT_SSE        TEST PROTECTION
  2462  	op_TR      uint32 = 0xDC00 // FORMAT_SS1        TRANSLATE
  2463  	op_TRACE   uint32 = 0x9900 // FORMAT_RS1        TRACE (32)
  2464  	op_TRACG   uint32 = 0xEB0F // FORMAT_RSY1       TRACE (64)
  2465  	op_TRAP2   uint32 = 0x01FF // FORMAT_E          TRAP
  2466  	op_TRAP4   uint32 = 0xB2FF // FORMAT_S          TRAP
  2467  	op_TRE     uint32 = 0xB2A5 // FORMAT_RRE        TRANSLATE EXTENDED
  2468  	op_TROO    uint32 = 0xB993 // FORMAT_RRF3       TRANSLATE ONE TO ONE
  2469  	op_TROT    uint32 = 0xB992 // FORMAT_RRF3       TRANSLATE ONE TO TWO
  2470  	op_TRT     uint32 = 0xDD00 // FORMAT_SS1        TRANSLATE AND TEST
  2471  	op_TRTE    uint32 = 0xB9BF // FORMAT_RRF3       TRANSLATE AND TEST EXTENDED
  2472  	op_TRTO    uint32 = 0xB991 // FORMAT_RRF3       TRANSLATE TWO TO ONE
  2473  	op_TRTR    uint32 = 0xD000 // FORMAT_SS1        TRANSLATE AND TEST REVERSE
  2474  	op_TRTRE   uint32 = 0xB9BD // FORMAT_RRF3       TRANSLATE AND TEST REVERSE EXTENDED
  2475  	op_TRTT    uint32 = 0xB990 // FORMAT_RRF3       TRANSLATE TWO TO TWO
  2476  	op_TS      uint32 = 0x9300 // FORMAT_S          TEST AND SET
  2477  	op_TSCH    uint32 = 0xB235 // FORMAT_S          TEST SUBCHANNEL
  2478  	op_UNPK    uint32 = 0xF300 // FORMAT_SS2        UNPACK
  2479  	op_UNPKA   uint32 = 0xEA00 // FORMAT_SS1        UNPACK ASCII
  2480  	op_UNPKU   uint32 = 0xE200 // FORMAT_SS1        UNPACK UNICODE
  2481  	op_UPT     uint32 = 0x0102 // FORMAT_E          UPDATE TREE
  2482  	op_X       uint32 = 0x5700 // FORMAT_RX1        EXCLUSIVE OR (32)
  2483  	op_XC      uint32 = 0xD700 // FORMAT_SS1        EXCLUSIVE OR (character)
  2484  	op_XG      uint32 = 0xE382 // FORMAT_RXY1       EXCLUSIVE OR (64)
  2485  	op_XGR     uint32 = 0xB982 // FORMAT_RRE        EXCLUSIVE OR (64)
  2486  	op_XGRK    uint32 = 0xB9E7 // FORMAT_RRF1       EXCLUSIVE OR (64)
  2487  	op_XI      uint32 = 0x9700 // FORMAT_SI         EXCLUSIVE OR (immediate)
  2488  	op_XIHF    uint32 = 0xC006 // FORMAT_RIL1       EXCLUSIVE OR IMMEDIATE (high)
  2489  	op_XILF    uint32 = 0xC007 // FORMAT_RIL1       EXCLUSIVE OR IMMEDIATE (low)
  2490  	op_XIY     uint32 = 0xEB57 // FORMAT_SIY        EXCLUSIVE OR (immediate)
  2491  	op_XR      uint32 = 0x1700 // FORMAT_RR         EXCLUSIVE OR (32)
  2492  	op_XRK     uint32 = 0xB9F7 // FORMAT_RRF1       EXCLUSIVE OR (32)
  2493  	op_XSCH    uint32 = 0xB276 // FORMAT_S          CANCEL SUBCHANNEL
  2494  	op_XY      uint32 = 0xE357 // FORMAT_RXY1       EXCLUSIVE OR (32)
  2495  	op_ZAP     uint32 = 0xF800 // FORMAT_SS2        ZERO AND ADD
  2496  	op_BRRK    uint32 = 0x0001 // FORMAT_E          BREAKPOINT
  2497  
  2498  	// added in z13
  2499  	op_CXPT   uint32 = 0xEDAF // 	RSL-b	CONVERT FROM PACKED (to extended DFP)
  2500  	op_CDPT   uint32 = 0xEDAE // 	RSL-b	CONVERT FROM PACKED (to long DFP)
  2501  	op_CPXT   uint32 = 0xEDAD // 	RSL-b	CONVERT TO PACKED (from extended DFP)
  2502  	op_CPDT   uint32 = 0xEDAC // 	RSL-b	CONVERT TO PACKED (from long DFP)
  2503  	op_LZRF   uint32 = 0xE33B // 	RXY-a	LOAD AND ZERO RIGHTMOST BYTE (32)
  2504  	op_LZRG   uint32 = 0xE32A // 	RXY-a	LOAD AND ZERO RIGHTMOST BYTE (64)
  2505  	op_LCCB   uint32 = 0xE727 // 	RXE	LOAD COUNT TO BLOCK BOUNDARY
  2506  	op_LOCHHI uint32 = 0xEC4E // 	RIE-g	LOAD HALFWORD HIGH IMMEDIATE ON CONDITION (32←16)
  2507  	op_LOCHI  uint32 = 0xEC42 // 	RIE-g	LOAD HALFWORD IMMEDIATE ON CONDITION (32←16)
  2508  	op_LOCGHI uint32 = 0xEC46 // 	RIE-g	LOAD HALFWORD IMMEDIATE ON CONDITION (64←16)
  2509  	op_LOCFH  uint32 = 0xEBE0 // 	RSY-b	LOAD HIGH ON CONDITION (32)
  2510  	op_LOCFHR uint32 = 0xB9E0 // 	RRF-c	LOAD HIGH ON CONDITION (32)
  2511  	op_LLZRGF uint32 = 0xE33A // 	RXY-a	LOAD LOGICAL AND ZERO RIGHTMOST BYTE (64←32)
  2512  	op_STOCFH uint32 = 0xEBE1 // 	RSY-b	STORE HIGH ON CONDITION
  2513  	op_VA     uint32 = 0xE7F3 // 	VRR-c	VECTOR ADD
  2514  	op_VACC   uint32 = 0xE7F1 // 	VRR-c	VECTOR ADD COMPUTE CARRY
  2515  	op_VAC    uint32 = 0xE7BB // 	VRR-d	VECTOR ADD WITH CARRY
  2516  	op_VACCC  uint32 = 0xE7B9 // 	VRR-d	VECTOR ADD WITH CARRY COMPUTE CARRY
  2517  	op_VN     uint32 = 0xE768 // 	VRR-c	VECTOR AND
  2518  	op_VNC    uint32 = 0xE769 // 	VRR-c	VECTOR AND WITH COMPLEMENT
  2519  	op_VAVG   uint32 = 0xE7F2 // 	VRR-c	VECTOR AVERAGE
  2520  	op_VAVGL  uint32 = 0xE7F0 // 	VRR-c	VECTOR AVERAGE LOGICAL
  2521  	op_VCKSM  uint32 = 0xE766 // 	VRR-c	VECTOR CHECKSUM
  2522  	op_VCEQ   uint32 = 0xE7F8 // 	VRR-b	VECTOR COMPARE EQUAL
  2523  	op_VCH    uint32 = 0xE7FB // 	VRR-b	VECTOR COMPARE HIGH
  2524  	op_VCHL   uint32 = 0xE7F9 // 	VRR-b	VECTOR COMPARE HIGH LOGICAL
  2525  	op_VCLZ   uint32 = 0xE753 // 	VRR-a	VECTOR COUNT LEADING ZEROS
  2526  	op_VCTZ   uint32 = 0xE752 // 	VRR-a	VECTOR COUNT TRAILING ZEROS
  2527  	op_VEC    uint32 = 0xE7DB // 	VRR-a	VECTOR ELEMENT COMPARE
  2528  	op_VECL   uint32 = 0xE7D9 // 	VRR-a	VECTOR ELEMENT COMPARE LOGICAL
  2529  	op_VERIM  uint32 = 0xE772 // 	VRI-d	VECTOR ELEMENT ROTATE AND INSERT UNDER MASK
  2530  	op_VERLL  uint32 = 0xE733 // 	VRS-a	VECTOR ELEMENT ROTATE LEFT LOGICAL
  2531  	op_VERLLV uint32 = 0xE773 // 	VRR-c	VECTOR ELEMENT ROTATE LEFT LOGICAL
  2532  	op_VESLV  uint32 = 0xE770 // 	VRR-c	VECTOR ELEMENT SHIFT LEFT
  2533  	op_VESL   uint32 = 0xE730 // 	VRS-a	VECTOR ELEMENT SHIFT LEFT
  2534  	op_VESRA  uint32 = 0xE73A // 	VRS-a	VECTOR ELEMENT SHIFT RIGHT ARITHMETIC
  2535  	op_VESRAV uint32 = 0xE77A // 	VRR-c	VECTOR ELEMENT SHIFT RIGHT ARITHMETIC
  2536  	op_VESRL  uint32 = 0xE738 // 	VRS-a	VECTOR ELEMENT SHIFT RIGHT LOGICAL
  2537  	op_VESRLV uint32 = 0xE778 // 	VRR-c	VECTOR ELEMENT SHIFT RIGHT LOGICAL
  2538  	op_VX     uint32 = 0xE76D // 	VRR-c	VECTOR EXCLUSIVE OR
  2539  	op_VFAE   uint32 = 0xE782 // 	VRR-b	VECTOR FIND ANY ELEMENT EQUAL
  2540  	op_VFEE   uint32 = 0xE780 // 	VRR-b	VECTOR FIND ELEMENT EQUAL
  2541  	op_VFENE  uint32 = 0xE781 // 	VRR-b	VECTOR FIND ELEMENT NOT EQUAL
  2542  	op_VFA    uint32 = 0xE7E3 // 	VRR-c	VECTOR FP ADD
  2543  	op_WFK    uint32 = 0xE7CA // 	VRR-a	VECTOR FP COMPARE AND SIGNAL SCALAR
  2544  	op_VFCE   uint32 = 0xE7E8 // 	VRR-c	VECTOR FP COMPARE EQUAL
  2545  	op_VFCH   uint32 = 0xE7EB // 	VRR-c	VECTOR FP COMPARE HIGH
  2546  	op_VFCHE  uint32 = 0xE7EA // 	VRR-c	VECTOR FP COMPARE HIGH OR EQUAL
  2547  	op_WFC    uint32 = 0xE7CB // 	VRR-a	VECTOR FP COMPARE SCALAR
  2548  	op_VCDG   uint32 = 0xE7C3 // 	VRR-a	VECTOR FP CONVERT FROM FIXED 64-BIT
  2549  	op_VCDLG  uint32 = 0xE7C1 // 	VRR-a	VECTOR FP CONVERT FROM LOGICAL 64-BIT
  2550  	op_VCGD   uint32 = 0xE7C2 // 	VRR-a	VECTOR FP CONVERT TO FIXED 64-BIT
  2551  	op_VCLGD  uint32 = 0xE7C0 // 	VRR-a	VECTOR FP CONVERT TO LOGICAL 64-BIT
  2552  	op_VFD    uint32 = 0xE7E5 // 	VRR-c	VECTOR FP DIVIDE
  2553  	op_VLDE   uint32 = 0xE7C4 // 	VRR-a	VECTOR FP LOAD LENGTHENED
  2554  	op_VLED   uint32 = 0xE7C5 // 	VRR-a	VECTOR FP LOAD ROUNDED
  2555  	op_VFM    uint32 = 0xE7E7 // 	VRR-c	VECTOR FP MULTIPLY
  2556  	op_VFMA   uint32 = 0xE78F // 	VRR-e	VECTOR FP MULTIPLY AND ADD
  2557  	op_VFMS   uint32 = 0xE78E // 	VRR-e	VECTOR FP MULTIPLY AND SUBTRACT
  2558  	op_VFPSO  uint32 = 0xE7CC // 	VRR-a	VECTOR FP PERFORM SIGN OPERATION
  2559  	op_VFSQ   uint32 = 0xE7CE // 	VRR-a	VECTOR FP SQUARE ROOT
  2560  	op_VFS    uint32 = 0xE7E2 // 	VRR-c	VECTOR FP SUBTRACT
  2561  	op_VFTCI  uint32 = 0xE74A // 	VRI-e	VECTOR FP TEST DATA CLASS IMMEDIATE
  2562  	op_VGFM   uint32 = 0xE7B4 // 	VRR-c	VECTOR GALOIS FIELD MULTIPLY SUM
  2563  	op_VGFMA  uint32 = 0xE7BC // 	VRR-d	VECTOR GALOIS FIELD MULTIPLY SUM AND ACCUMULATE
  2564  	op_VGEF   uint32 = 0xE713 // 	VRV	VECTOR GATHER ELEMENT (32)
  2565  	op_VGEG   uint32 = 0xE712 // 	VRV	VECTOR GATHER ELEMENT (64)
  2566  	op_VGBM   uint32 = 0xE744 // 	VRI-a	VECTOR GENERATE BYTE MASK
  2567  	op_VGM    uint32 = 0xE746 // 	VRI-b	VECTOR GENERATE MASK
  2568  	op_VISTR  uint32 = 0xE75C // 	VRR-a	VECTOR ISOLATE STRING
  2569  	op_VL     uint32 = 0xE706 // 	VRX	VECTOR LOAD
  2570  	op_VLR    uint32 = 0xE756 // 	VRR-a	VECTOR LOAD
  2571  	op_VLREP  uint32 = 0xE705 // 	VRX	VECTOR LOAD AND REPLICATE
  2572  	op_VLC    uint32 = 0xE7DE // 	VRR-a	VECTOR LOAD COMPLEMENT
  2573  	op_VLEH   uint32 = 0xE701 // 	VRX	VECTOR LOAD ELEMENT (16)
  2574  	op_VLEF   uint32 = 0xE703 // 	VRX	VECTOR LOAD ELEMENT (32)
  2575  	op_VLEG   uint32 = 0xE702 // 	VRX	VECTOR LOAD ELEMENT (64)
  2576  	op_VLEB   uint32 = 0xE700 // 	VRX	VECTOR LOAD ELEMENT (8)
  2577  	op_VLEIH  uint32 = 0xE741 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (16)
  2578  	op_VLEIF  uint32 = 0xE743 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (32)
  2579  	op_VLEIG  uint32 = 0xE742 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (64)
  2580  	op_VLEIB  uint32 = 0xE740 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (8)
  2581  	op_VFI    uint32 = 0xE7C7 // 	VRR-a	VECTOR LOAD FP INTEGER
  2582  	op_VLGV   uint32 = 0xE721 // 	VRS-c	VECTOR LOAD GR FROM VR ELEMENT
  2583  	op_VLLEZ  uint32 = 0xE704 // 	VRX	VECTOR LOAD LOGICAL ELEMENT AND ZERO
  2584  	op_VLM    uint32 = 0xE736 // 	VRS-a	VECTOR LOAD MULTIPLE
  2585  	op_VLP    uint32 = 0xE7DF // 	VRR-a	VECTOR LOAD POSITIVE
  2586  	op_VLBB   uint32 = 0xE707 // 	VRX	VECTOR LOAD TO BLOCK BOUNDARY
  2587  	op_VLVG   uint32 = 0xE722 // 	VRS-b	VECTOR LOAD VR ELEMENT FROM GR
  2588  	op_VLVGP  uint32 = 0xE762 // 	VRR-f	VECTOR LOAD VR FROM GRS DISJOINT
  2589  	op_VLL    uint32 = 0xE737 // 	VRS-b	VECTOR LOAD WITH LENGTH
  2590  	op_VMX    uint32 = 0xE7FF // 	VRR-c	VECTOR MAXIMUM
  2591  	op_VMXL   uint32 = 0xE7FD // 	VRR-c	VECTOR MAXIMUM LOGICAL
  2592  	op_VMRH   uint32 = 0xE761 // 	VRR-c	VECTOR MERGE HIGH
  2593  	op_VMRL   uint32 = 0xE760 // 	VRR-c	VECTOR MERGE LOW
  2594  	op_VMN    uint32 = 0xE7FE // 	VRR-c	VECTOR MINIMUM
  2595  	op_VMNL   uint32 = 0xE7FC // 	VRR-c	VECTOR MINIMUM LOGICAL
  2596  	op_VMAE   uint32 = 0xE7AE // 	VRR-d	VECTOR MULTIPLY AND ADD EVEN
  2597  	op_VMAH   uint32 = 0xE7AB // 	VRR-d	VECTOR MULTIPLY AND ADD HIGH
  2598  	op_VMALE  uint32 = 0xE7AC // 	VRR-d	VECTOR MULTIPLY AND ADD LOGICAL EVEN
  2599  	op_VMALH  uint32 = 0xE7A9 // 	VRR-d	VECTOR MULTIPLY AND ADD LOGICAL HIGH
  2600  	op_VMALO  uint32 = 0xE7AD // 	VRR-d	VECTOR MULTIPLY AND ADD LOGICAL ODD
  2601  	op_VMAL   uint32 = 0xE7AA // 	VRR-d	VECTOR MULTIPLY AND ADD LOW
  2602  	op_VMAO   uint32 = 0xE7AF // 	VRR-d	VECTOR MULTIPLY AND ADD ODD
  2603  	op_VME    uint32 = 0xE7A6 // 	VRR-c	VECTOR MULTIPLY EVEN
  2604  	op_VMH    uint32 = 0xE7A3 // 	VRR-c	VECTOR MULTIPLY HIGH
  2605  	op_VMLE   uint32 = 0xE7A4 // 	VRR-c	VECTOR MULTIPLY EVEN LOGICAL
  2606  	op_VMLH   uint32 = 0xE7A1 // 	VRR-c	VECTOR MULTIPLY HIGH LOGICAL
  2607  	op_VMLO   uint32 = 0xE7A5 // 	VRR-c	VECTOR MULTIPLY ODD LOGICAL
  2608  	op_VML    uint32 = 0xE7A2 // 	VRR-c	VECTOR MULTIPLY LOW
  2609  	op_VMO    uint32 = 0xE7A7 // 	VRR-c	VECTOR MULTIPLY ODD
  2610  	op_VNO    uint32 = 0xE76B // 	VRR-c	VECTOR NOR
  2611  	op_VO     uint32 = 0xE76A // 	VRR-c	VECTOR OR
  2612  	op_VPK    uint32 = 0xE794 // 	VRR-c	VECTOR PACK
  2613  	op_VPKLS  uint32 = 0xE795 // 	VRR-b	VECTOR PACK LOGICAL SATURATE
  2614  	op_VPKS   uint32 = 0xE797 // 	VRR-b	VECTOR PACK SATURATE
  2615  	op_VPERM  uint32 = 0xE78C // 	VRR-e	VECTOR PERMUTE
  2616  	op_VPDI   uint32 = 0xE784 // 	VRR-c	VECTOR PERMUTE DOUBLEWORD IMMEDIATE
  2617  	op_VPOPCT uint32 = 0xE750 // 	VRR-a	VECTOR POPULATION COUNT
  2618  	op_VREP   uint32 = 0xE74D // 	VRI-c	VECTOR REPLICATE
  2619  	op_VREPI  uint32 = 0xE745 // 	VRI-a	VECTOR REPLICATE IMMEDIATE
  2620  	op_VSCEF  uint32 = 0xE71B // 	VRV	VECTOR SCATTER ELEMENT (32)
  2621  	op_VSCEG  uint32 = 0xE71A // 	VRV	VECTOR SCATTER ELEMENT (64)
  2622  	op_VSEL   uint32 = 0xE78D // 	VRR-e	VECTOR SELECT
  2623  	op_VSL    uint32 = 0xE774 // 	VRR-c	VECTOR SHIFT LEFT
  2624  	op_VSLB   uint32 = 0xE775 // 	VRR-c	VECTOR SHIFT LEFT BY BYTE
  2625  	op_VSLDB  uint32 = 0xE777 // 	VRI-d	VECTOR SHIFT LEFT DOUBLE BY BYTE
  2626  	op_VSRA   uint32 = 0xE77E // 	VRR-c	VECTOR SHIFT RIGHT ARITHMETIC
  2627  	op_VSRAB  uint32 = 0xE77F // 	VRR-c	VECTOR SHIFT RIGHT ARITHMETIC BY BYTE
  2628  	op_VSRL   uint32 = 0xE77C // 	VRR-c	VECTOR SHIFT RIGHT LOGICAL
  2629  	op_VSRLB  uint32 = 0xE77D // 	VRR-c	VECTOR SHIFT RIGHT LOGICAL BY BYTE
  2630  	op_VSEG   uint32 = 0xE75F // 	VRR-a	VECTOR SIGN EXTEND TO DOUBLEWORD
  2631  	op_VST    uint32 = 0xE70E // 	VRX	VECTOR STORE
  2632  	op_VSTEH  uint32 = 0xE709 // 	VRX	VECTOR STORE ELEMENT (16)
  2633  	op_VSTEF  uint32 = 0xE70B // 	VRX	VECTOR STORE ELEMENT (32)
  2634  	op_VSTEG  uint32 = 0xE70A // 	VRX	VECTOR STORE ELEMENT (64)
  2635  	op_VSTEB  uint32 = 0xE708 // 	VRX	VECTOR STORE ELEMENT (8)
  2636  	op_VSTM   uint32 = 0xE73E // 	VRS-a	VECTOR STORE MULTIPLE
  2637  	op_VSTL   uint32 = 0xE73F // 	VRS-b	VECTOR STORE WITH LENGTH
  2638  	op_VSTRC  uint32 = 0xE78A // 	VRR-d	VECTOR STRING RANGE COMPARE
  2639  	op_VS     uint32 = 0xE7F7 // 	VRR-c	VECTOR SUBTRACT
  2640  	op_VSCBI  uint32 = 0xE7F5 // 	VRR-c	VECTOR SUBTRACT COMPUTE BORROW INDICATION
  2641  	op_VSBCBI uint32 = 0xE7BD // 	VRR-d	VECTOR SUBTRACT WITH BORROW COMPUTE BORROW INDICATION
  2642  	op_VSBI   uint32 = 0xE7BF // 	VRR-d	VECTOR SUBTRACT WITH BORROW INDICATION
  2643  	op_VSUMG  uint32 = 0xE765 // 	VRR-c	VECTOR SUM ACROSS DOUBLEWORD
  2644  	op_VSUMQ  uint32 = 0xE767 // 	VRR-c	VECTOR SUM ACROSS QUADWORD
  2645  	op_VSUM   uint32 = 0xE764 // 	VRR-c	VECTOR SUM ACROSS WORD
  2646  	op_VTM    uint32 = 0xE7D8 // 	VRR-a	VECTOR TEST UNDER MASK
  2647  	op_VUPH   uint32 = 0xE7D7 // 	VRR-a	VECTOR UNPACK HIGH
  2648  	op_VUPLH  uint32 = 0xE7D5 // 	VRR-a	VECTOR UNPACK LOGICAL HIGH
  2649  	op_VUPLL  uint32 = 0xE7D4 // 	VRR-a	VECTOR UNPACK LOGICAL LOW
  2650  	op_VUPL   uint32 = 0xE7D6 // 	VRR-a	VECTOR UNPACK LOW
  2651  	op_VMSL   uint32 = 0xE7B8 // 	VRR-d	VECTOR MULTIPLY SUM LOGICAL
  2652  	op_VFMAX  uint32 = 0xE7EF // 	VRR-c	VECTOR FP MAXIMUM
  2653  	op_VFMIN  uint32 = 0xE7EE // 	VRR-c	VECTOR FP MINIMUM
  2654  
  2655  	// added in z15
  2656  	op_KDSA uint32 = 0xB93A // FORMAT_RRE        COMPUTE DIGITAL SIGNATURE AUTHENTICATION (KDSA)
  2657  
  2658  )
  2659  
  2660  func oclass(a *obj.Addr) int {
  2661  	return int(a.Class) - 1
  2662  }
  2663  
  2664  // Add a relocation for the immediate in a RIL style instruction.
  2665  // The addend will be adjusted as required.
  2666  func (c *ctxtz) addrilreloc(sym *obj.LSym, add int64) {
  2667  	if sym == nil {
  2668  		c.ctxt.Diag("require symbol to apply relocation")
  2669  	}
  2670  	offset := int64(2) // relocation offset from start of instruction
  2671  	c.cursym.AddRel(c.ctxt, obj.Reloc{
  2672  		Type: objabi.R_PCRELDBL,
  2673  		Off:  int32(c.pc + offset),
  2674  		Siz:  4,
  2675  		Sym:  sym,
  2676  		Add:  add + offset + 4,
  2677  	})
  2678  }
  2679  
  2680  // Add a CALL relocation for the immediate in a RIL style instruction.
  2681  // The addend will be adjusted as required.
  2682  func (c *ctxtz) addcallreloc(sym *obj.LSym, add int64) {
  2683  	if sym == nil {
  2684  		c.ctxt.Diag("require symbol to apply relocation")
  2685  	}
  2686  	offset := int64(2) // relocation offset from start of instruction
  2687  	c.cursym.AddRel(c.ctxt, obj.Reloc{
  2688  		Type: objabi.R_CALL,
  2689  		Off:  int32(c.pc + offset),
  2690  		Siz:  4,
  2691  		Sym:  sym,
  2692  		Add:  add + offset + int64(4),
  2693  	})
  2694  }
  2695  
  2696  func (c *ctxtz) branchMask(p *obj.Prog) CCMask {
  2697  	switch p.As {
  2698  	case ABRC, ALOCR, ALOCGR,
  2699  		ACRJ, ACGRJ, ACIJ, ACGIJ,
  2700  		ACLRJ, ACLGRJ, ACLIJ, ACLGIJ:
  2701  		return CCMask(p.From.Offset)
  2702  	case ABEQ, ACMPBEQ, ACMPUBEQ, AMOVDEQ:
  2703  		return Equal
  2704  	case ABGE, ACMPBGE, ACMPUBGE, AMOVDGE:
  2705  		return GreaterOrEqual
  2706  	case ABGT, ACMPBGT, ACMPUBGT, AMOVDGT:
  2707  		return Greater
  2708  	case ABLE, ACMPBLE, ACMPUBLE, AMOVDLE:
  2709  		return LessOrEqual
  2710  	case ABLT, ACMPBLT, ACMPUBLT, AMOVDLT:
  2711  		return Less
  2712  	case ABNE, ACMPBNE, ACMPUBNE, AMOVDNE:
  2713  		return NotEqual
  2714  	case ABLEU: // LE or unordered
  2715  		return NotGreater
  2716  	case ABLTU: // LT or unordered
  2717  		return LessOrUnordered
  2718  	case ABVC:
  2719  		return Never // needs extra instruction
  2720  	case ABVS:
  2721  		return Unordered
  2722  	}
  2723  	c.ctxt.Diag("unknown conditional branch %v", p.As)
  2724  	return Always
  2725  }
  2726  
  2727  func regtmp(p *obj.Prog) uint32 {
  2728  	p.Mark |= USETMP
  2729  	return REGTMP
  2730  }
  2731  
  2732  func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) {
  2733  	o := c.oplook(p)
  2734  
  2735  	if o == nil {
  2736  		return
  2737  	}
  2738  
  2739  	// If REGTMP is used in generated code, we need to set USETMP on p.Mark.
  2740  	// So we use regtmp(p) for REGTMP.
  2741  
  2742  	switch o.i {
  2743  	default:
  2744  		c.ctxt.Diag("unknown index %d", o.i)
  2745  
  2746  	case 0: // PSEUDO OPS
  2747  		break
  2748  
  2749  	case 1: // mov reg reg
  2750  		switch p.As {
  2751  		default:
  2752  			c.ctxt.Diag("unhandled operation: %v", p.As)
  2753  		case AMOVD:
  2754  			zRRE(op_LGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2755  		// sign extend
  2756  		case AMOVW:
  2757  			zRRE(op_LGFR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2758  		case AMOVH:
  2759  			zRRE(op_LGHR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2760  		case AMOVB:
  2761  			zRRE(op_LGBR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2762  		// zero extend
  2763  		case AMOVWZ:
  2764  			zRRE(op_LLGFR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2765  		case AMOVHZ:
  2766  			zRRE(op_LLGHR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2767  		case AMOVBZ:
  2768  			zRRE(op_LLGCR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2769  		// reverse bytes
  2770  		case AMOVDBR:
  2771  			zRRE(op_LRVGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2772  		case AMOVWBR:
  2773  			zRRE(op_LRVR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2774  		// floating point
  2775  		case AFMOVD, AFMOVS:
  2776  			zRR(op_LDR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2777  		}
  2778  
  2779  	case 2: // arithmetic op reg [reg] reg
  2780  		r := p.Reg
  2781  		if r == 0 {
  2782  			r = p.To.Reg
  2783  		}
  2784  
  2785  		var opcode uint32
  2786  
  2787  		switch p.As {
  2788  		default:
  2789  			c.ctxt.Diag("invalid opcode")
  2790  		case AADD:
  2791  			opcode = op_AGRK
  2792  		case AADDC:
  2793  			opcode = op_ALGRK
  2794  		case AADDE:
  2795  			opcode = op_ALCGR
  2796  		case AADDW:
  2797  			opcode = op_ARK
  2798  		case AMULLW:
  2799  			opcode = op_MSGFR
  2800  		case AMULLD:
  2801  			opcode = op_MSGR
  2802  		case ADIVW, AMODW:
  2803  			opcode = op_DSGFR
  2804  		case ADIVWU, AMODWU:
  2805  			opcode = op_DLR
  2806  		case ADIVD, AMODD:
  2807  			opcode = op_DSGR
  2808  		case ADIVDU, AMODDU:
  2809  			opcode = op_DLGR
  2810  		}
  2811  
  2812  		switch p.As {
  2813  		default:
  2814  
  2815  		case AADD, AADDC, AADDW:
  2816  			if p.As == AADDW && r == p.To.Reg {
  2817  				zRR(op_AR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2818  			} else {
  2819  				zRRF(opcode, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2820  			}
  2821  
  2822  		case AADDE, AMULLW, AMULLD:
  2823  			if r == p.To.Reg {
  2824  				zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2825  			} else if p.From.Reg == p.To.Reg {
  2826  				zRRE(opcode, uint32(p.To.Reg), uint32(r), asm)
  2827  			} else {
  2828  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2829  				zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2830  			}
  2831  
  2832  		case ADIVW, ADIVWU, ADIVD, ADIVDU:
  2833  			if p.As == ADIVWU || p.As == ADIVDU {
  2834  				zRI(op_LGHI, regtmp(p), 0, asm)
  2835  			}
  2836  			zRRE(op_LGR, REGTMP2, uint32(r), asm)
  2837  			zRRE(opcode, regtmp(p), uint32(p.From.Reg), asm)
  2838  			zRRE(op_LGR, uint32(p.To.Reg), REGTMP2, asm)
  2839  
  2840  		case AMODW, AMODWU, AMODD, AMODDU:
  2841  			if p.As == AMODWU || p.As == AMODDU {
  2842  				zRI(op_LGHI, regtmp(p), 0, asm)
  2843  			}
  2844  			zRRE(op_LGR, REGTMP2, uint32(r), asm)
  2845  			zRRE(opcode, regtmp(p), uint32(p.From.Reg), asm)
  2846  			zRRE(op_LGR, uint32(p.To.Reg), regtmp(p), asm)
  2847  
  2848  		}
  2849  
  2850  	case 3: // mov $constant reg
  2851  		v := c.vregoff(&p.From)
  2852  		switch p.As {
  2853  		case AMOVBZ:
  2854  			v = int64(uint8(v))
  2855  		case AMOVHZ:
  2856  			v = int64(uint16(v))
  2857  		case AMOVWZ:
  2858  			v = int64(uint32(v))
  2859  		case AMOVB:
  2860  			v = int64(int8(v))
  2861  		case AMOVH:
  2862  			v = int64(int16(v))
  2863  		case AMOVW:
  2864  			v = int64(int32(v))
  2865  		}
  2866  		if int64(int16(v)) == v {
  2867  			zRI(op_LGHI, uint32(p.To.Reg), uint32(v), asm)
  2868  		} else if v&0xffff0000 == v {
  2869  			zRI(op_LLILH, uint32(p.To.Reg), uint32(v>>16), asm)
  2870  		} else if v&0xffff00000000 == v {
  2871  			zRI(op_LLIHL, uint32(p.To.Reg), uint32(v>>32), asm)
  2872  		} else if uint64(v)&0xffff000000000000 == uint64(v) {
  2873  			zRI(op_LLIHH, uint32(p.To.Reg), uint32(v>>48), asm)
  2874  		} else if int64(int32(v)) == v {
  2875  			zRIL(_a, op_LGFI, uint32(p.To.Reg), uint32(v), asm)
  2876  		} else if int64(uint32(v)) == v {
  2877  			zRIL(_a, op_LLILF, uint32(p.To.Reg), uint32(v), asm)
  2878  		} else if uint64(v)&0xffffffff00000000 == uint64(v) {
  2879  			zRIL(_a, op_LLIHF, uint32(p.To.Reg), uint32(v>>32), asm)
  2880  		} else {
  2881  			zRIL(_a, op_LLILF, uint32(p.To.Reg), uint32(v), asm)
  2882  			zRIL(_a, op_IIHF, uint32(p.To.Reg), uint32(v>>32), asm)
  2883  		}
  2884  
  2885  	case 4: // multiply high (a*b)>>64
  2886  		r := p.Reg
  2887  		if r == 0 {
  2888  			r = p.To.Reg
  2889  		}
  2890  		zRRE(op_LGR, REGTMP2, uint32(r), asm)
  2891  		zRRE(op_MLGR, regtmp(p), uint32(p.From.Reg), asm)
  2892  		switch p.As {
  2893  		case AMULHDU:
  2894  			// Unsigned: move result into correct register.
  2895  			zRRE(op_LGR, uint32(p.To.Reg), regtmp(p), asm)
  2896  		case AMULHD:
  2897  			// Signed: need to convert result.
  2898  			// See Hacker's Delight 8-3.
  2899  			zRSY(op_SRAG, REGTMP2, uint32(p.From.Reg), 0, 63, asm)
  2900  			zRRE(op_NGR, REGTMP2, uint32(r), asm)
  2901  			zRRE(op_SGR, regtmp(p), REGTMP2, asm)
  2902  			zRSY(op_SRAG, REGTMP2, uint32(r), 0, 63, asm)
  2903  			zRRE(op_NGR, REGTMP2, uint32(p.From.Reg), asm)
  2904  			zRRF(op_SGRK, REGTMP2, 0, uint32(p.To.Reg), regtmp(p), asm)
  2905  		}
  2906  
  2907  	case 5: // syscall
  2908  		zI(op_SVC, 0, asm)
  2909  
  2910  	case 6: // logical op reg [reg] reg
  2911  		var oprr, oprre, oprrf uint32
  2912  		switch p.As {
  2913  		case AAND:
  2914  			oprre = op_NGR
  2915  			oprrf = op_NGRK
  2916  		case AANDW:
  2917  			oprr = op_NR
  2918  			oprrf = op_NRK
  2919  		case AOR:
  2920  			oprre = op_OGR
  2921  			oprrf = op_OGRK
  2922  		case AORW:
  2923  			oprr = op_OR
  2924  			oprrf = op_ORK
  2925  		case AXOR:
  2926  			oprre = op_XGR
  2927  			oprrf = op_XGRK
  2928  		case AXORW:
  2929  			oprr = op_XR
  2930  			oprrf = op_XRK
  2931  		}
  2932  		if p.Reg == 0 {
  2933  			if oprr != 0 {
  2934  				zRR(oprr, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2935  			} else {
  2936  				zRRE(oprre, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2937  			}
  2938  		} else {
  2939  			zRRF(oprrf, uint32(p.Reg), 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2940  		}
  2941  
  2942  	case 7: // shift/rotate reg [reg] reg
  2943  		d2 := c.vregoff(&p.From)
  2944  		b2 := p.From.Reg
  2945  		r3 := p.Reg
  2946  		if r3 == 0 {
  2947  			r3 = p.To.Reg
  2948  		}
  2949  		r1 := p.To.Reg
  2950  		var opcode uint32
  2951  		switch p.As {
  2952  		default:
  2953  		case ASLD:
  2954  			opcode = op_SLLG
  2955  		case ASRD:
  2956  			opcode = op_SRLG
  2957  		case ASLW:
  2958  			opcode = op_SLLK
  2959  		case ASRW:
  2960  			opcode = op_SRLK
  2961  		case ARLL:
  2962  			opcode = op_RLL
  2963  		case ARLLG:
  2964  			opcode = op_RLLG
  2965  		case ASRAW:
  2966  			opcode = op_SRAK
  2967  		case ASRAD:
  2968  			opcode = op_SRAG
  2969  		}
  2970  		zRSY(opcode, uint32(r1), uint32(r3), uint32(b2), uint32(d2), asm)
  2971  
  2972  	case 8: // find leftmost one
  2973  		if p.To.Reg&1 != 0 {
  2974  			c.ctxt.Diag("target must be an even-numbered register")
  2975  		}
  2976  		// FLOGR also writes a mask to p.To.Reg+1.
  2977  		zRRE(op_FLOGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2978  
  2979  	case 9: // population count
  2980  		zRRE(op_POPCNT, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2981  
  2982  	case 10: // subtract reg [reg] reg
  2983  		r := int(p.Reg)
  2984  
  2985  		switch p.As {
  2986  		default:
  2987  		case ASUB:
  2988  			if r == 0 {
  2989  				zRRE(op_SGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2990  			} else {
  2991  				zRRF(op_SGRK, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2992  			}
  2993  		case ASUBC:
  2994  			if r == 0 {
  2995  				zRRE(op_SLGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2996  			} else {
  2997  				zRRF(op_SLGRK, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2998  			}
  2999  		case ASUBE:
  3000  			if r == 0 {
  3001  				r = int(p.To.Reg)
  3002  			}
  3003  			if r == int(p.To.Reg) {
  3004  				zRRE(op_SLBGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3005  			} else if p.From.Reg == p.To.Reg {
  3006  				zRRE(op_LGR, regtmp(p), uint32(p.From.Reg), asm)
  3007  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  3008  				zRRE(op_SLBGR, uint32(p.To.Reg), regtmp(p), asm)
  3009  			} else {
  3010  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  3011  				zRRE(op_SLBGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3012  			}
  3013  		case ASUBW:
  3014  			if r == 0 {
  3015  				zRR(op_SR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3016  			} else {
  3017  				zRRF(op_SRK, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  3018  			}
  3019  		}
  3020  
  3021  	case 11: // br/bl
  3022  		v := int32(0)
  3023  
  3024  		if p.To.Target() != nil {
  3025  			v = int32((p.To.Target().Pc - p.Pc) >> 1)
  3026  		}
  3027  
  3028  		if p.As == ABR && p.To.Sym == nil && int32(int16(v)) == v {
  3029  			zRI(op_BRC, 0xF, uint32(v), asm)
  3030  		} else {
  3031  			if p.As == ABL {
  3032  				zRIL(_b, op_BRASL, uint32(REG_LR), uint32(v), asm)
  3033  			} else {
  3034  				zRIL(_c, op_BRCL, 0xF, uint32(v), asm)
  3035  			}
  3036  			if p.To.Sym != nil {
  3037  				c.addcallreloc(p.To.Sym, p.To.Offset)
  3038  			}
  3039  		}
  3040  
  3041  	case 12:
  3042  		r1 := p.To.Reg
  3043  		d2 := c.vregoff(&p.From)
  3044  		b2 := p.From.Reg
  3045  		if b2 == 0 {
  3046  			b2 = REGSP
  3047  		}
  3048  		x2 := p.From.Index
  3049  		if -DISP20/2 > d2 || d2 >= DISP20/2 {
  3050  			zRIL(_a, op_LGFI, regtmp(p), uint32(d2), asm)
  3051  			if x2 != 0 {
  3052  				zRX(op_LA, regtmp(p), regtmp(p), uint32(x2), 0, asm)
  3053  			}
  3054  			x2 = int16(regtmp(p))
  3055  			d2 = 0
  3056  		}
  3057  		var opx, opxy uint32
  3058  		switch p.As {
  3059  		case AADD:
  3060  			opxy = op_AG
  3061  		case AADDC:
  3062  			opxy = op_ALG
  3063  		case AADDE:
  3064  			opxy = op_ALCG
  3065  		case AADDW:
  3066  			opx = op_A
  3067  			opxy = op_AY
  3068  		case AMULLW:
  3069  			opx = op_MS
  3070  			opxy = op_MSY
  3071  		case AMULLD:
  3072  			opxy = op_MSG
  3073  		case ASUB:
  3074  			opxy = op_SG
  3075  		case ASUBC:
  3076  			opxy = op_SLG
  3077  		case ASUBE:
  3078  			opxy = op_SLBG
  3079  		case ASUBW:
  3080  			opx = op_S
  3081  			opxy = op_SY
  3082  		case AAND:
  3083  			opxy = op_NG
  3084  		case AANDW:
  3085  			opx = op_N
  3086  			opxy = op_NY
  3087  		case AOR:
  3088  			opxy = op_OG
  3089  		case AORW:
  3090  			opx = op_O
  3091  			opxy = op_OY
  3092  		case AXOR:
  3093  			opxy = op_XG
  3094  		case AXORW:
  3095  			opx = op_X
  3096  			opxy = op_XY
  3097  		}
  3098  		if opx != 0 && 0 <= d2 && d2 < DISP12 {
  3099  			zRX(opx, uint32(r1), uint32(x2), uint32(b2), uint32(d2), asm)
  3100  		} else {
  3101  			zRXY(opxy, uint32(r1), uint32(x2), uint32(b2), uint32(d2), asm)
  3102  		}
  3103  
  3104  	case 13: // rotate, followed by operation
  3105  		r1 := p.To.Reg
  3106  		r2 := p.RestArgs[2].Reg
  3107  		i3 := uint8(p.From.Offset)        // start
  3108  		i4 := uint8(p.RestArgs[0].Offset) // end
  3109  		i5 := uint8(p.RestArgs[1].Offset) // rotate amount
  3110  		switch p.As {
  3111  		case ARNSBGT, ARXSBGT, AROSBGT:
  3112  			i3 |= 0x80 // test-results
  3113  		case ARISBGZ, ARISBGNZ, ARISBHGZ, ARISBLGZ:
  3114  			i4 |= 0x80 // zero-remaining-bits
  3115  		}
  3116  		var opcode uint32
  3117  		switch p.As {
  3118  		case ARNSBG, ARNSBGT:
  3119  			opcode = op_RNSBG
  3120  		case ARXSBG, ARXSBGT:
  3121  			opcode = op_RXSBG
  3122  		case AROSBG, AROSBGT:
  3123  			opcode = op_ROSBG
  3124  		case ARISBG, ARISBGZ:
  3125  			opcode = op_RISBG
  3126  		case ARISBGN, ARISBGNZ:
  3127  			opcode = op_RISBGN
  3128  		case ARISBHG, ARISBHGZ:
  3129  			opcode = op_RISBHG
  3130  		case ARISBLG, ARISBLGZ:
  3131  			opcode = op_RISBLG
  3132  		}
  3133  		zRIE(_f, uint32(opcode), uint32(r1), uint32(r2), 0, uint32(i3), uint32(i4), 0, uint32(i5), asm)
  3134  
  3135  	case 15: // br/bl (reg)
  3136  		r := p.To.Reg
  3137  		if p.As == ABCL || p.As == ABL {
  3138  			zRR(op_BASR, uint32(REG_LR), uint32(r), asm)
  3139  		} else {
  3140  			zRR(op_BCR, uint32(Always), uint32(r), asm)
  3141  		}
  3142  
  3143  	case 16: // conditional branch
  3144  		v := int32(0)
  3145  		if p.To.Target() != nil {
  3146  			v = int32((p.To.Target().Pc - p.Pc) >> 1)
  3147  		}
  3148  		mask := uint32(c.branchMask(p))
  3149  		if p.To.Sym == nil && int32(int16(v)) == v {
  3150  			zRI(op_BRC, mask, uint32(v), asm)
  3151  		} else {
  3152  			zRIL(_c, op_BRCL, mask, uint32(v), asm)
  3153  		}
  3154  		if p.To.Sym != nil {
  3155  			c.addrilreloc(p.To.Sym, p.To.Offset)
  3156  		}
  3157  
  3158  	case 17: // move on condition
  3159  		m3 := uint32(c.branchMask(p))
  3160  		zRRF(op_LOCGR, m3, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3161  
  3162  	case 18: // br/bl reg
  3163  		if p.As == ABL {
  3164  			zRR(op_BASR, uint32(REG_LR), uint32(p.To.Reg), asm)
  3165  		} else {
  3166  			zRR(op_BCR, uint32(Always), uint32(p.To.Reg), asm)
  3167  		}
  3168  
  3169  	case 19: // mov $sym+n(SB) reg
  3170  		d := c.vregoff(&p.From)
  3171  		zRIL(_b, op_LARL, uint32(p.To.Reg), 0, asm)
  3172  		if d&1 != 0 {
  3173  			zRX(op_LA, uint32(p.To.Reg), uint32(p.To.Reg), 0, 1, asm)
  3174  			d -= 1
  3175  		}
  3176  		c.addrilreloc(p.From.Sym, d)
  3177  
  3178  	case 21: // subtract $constant [reg] reg
  3179  		v := c.vregoff(&p.From)
  3180  		r := p.Reg
  3181  		if r == 0 {
  3182  			r = p.To.Reg
  3183  		}
  3184  		switch p.As {
  3185  		case ASUB:
  3186  			zRIL(_a, op_LGFI, uint32(regtmp(p)), uint32(v), asm)
  3187  			zRRF(op_SLGRK, uint32(regtmp(p)), 0, uint32(p.To.Reg), uint32(r), asm)
  3188  		case ASUBC:
  3189  			if r != p.To.Reg {
  3190  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  3191  			}
  3192  			zRIL(_a, op_SLGFI, uint32(p.To.Reg), uint32(v), asm)
  3193  		case ASUBW:
  3194  			if r != p.To.Reg {
  3195  				zRR(op_LR, uint32(p.To.Reg), uint32(r), asm)
  3196  			}
  3197  			zRIL(_a, op_SLFI, uint32(p.To.Reg), uint32(v), asm)
  3198  		}
  3199  
  3200  	case 22: // add/multiply $constant [reg] reg
  3201  		v := c.vregoff(&p.From)
  3202  		r := p.Reg
  3203  		if r == 0 {
  3204  			r = p.To.Reg
  3205  		}
  3206  		var opri, opril, oprie uint32
  3207  		switch p.As {
  3208  		case AADD:
  3209  			opri = op_AGHI
  3210  			opril = op_AGFI
  3211  			oprie = op_AGHIK
  3212  		case AADDC:
  3213  			opril = op_ALGFI
  3214  			oprie = op_ALGHSIK
  3215  		case AADDW:
  3216  			opri = op_AHI
  3217  			opril = op_AFI
  3218  			oprie = op_AHIK
  3219  		case AMULLW:
  3220  			opri = op_MHI
  3221  			opril = op_MSFI
  3222  		case AMULLD:
  3223  			opri = op_MGHI
  3224  			opril = op_MSGFI
  3225  		}
  3226  		if r != p.To.Reg && (oprie == 0 || int64(int16(v)) != v) {
  3227  			switch p.As {
  3228  			case AADD, AADDC, AMULLD:
  3229  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  3230  			case AADDW, AMULLW:
  3231  				zRR(op_LR, uint32(p.To.Reg), uint32(r), asm)
  3232  			}
  3233  			r = p.To.Reg
  3234  		}
  3235  		if opri != 0 && r == p.To.Reg && int64(int16(v)) == v {
  3236  			zRI(opri, uint32(p.To.Reg), uint32(v), asm)
  3237  		} else if oprie != 0 && int64(int16(v)) == v {
  3238  			zRIE(_d, oprie, uint32(p.To.Reg), uint32(r), uint32(v), 0, 0, 0, 0, asm)
  3239  		} else {
  3240  			zRIL(_a, opril, uint32(p.To.Reg), uint32(v), asm)
  3241  		}
  3242  
  3243  	case 23: // 64-bit logical op $constant reg
  3244  		// TODO(mundaym): merge with case 24.
  3245  		v := c.vregoff(&p.From)
  3246  		switch p.As {
  3247  		default:
  3248  			c.ctxt.Diag("%v is not supported", p)
  3249  		case AAND:
  3250  			if v >= 0 { // needs zero extend
  3251  				zRIL(_a, op_LGFI, regtmp(p), uint32(v), asm)
  3252  				zRRE(op_NGR, uint32(p.To.Reg), regtmp(p), asm)
  3253  			} else if int64(int16(v)) == v {
  3254  				zRI(op_NILL, uint32(p.To.Reg), uint32(v), asm)
  3255  			} else { //  r.To.Reg & 0xffffffff00000000 & uint32(v)
  3256  				zRIL(_a, op_NILF, uint32(p.To.Reg), uint32(v), asm)
  3257  			}
  3258  		case AOR:
  3259  			if int64(uint32(v)) != v { // needs sign extend
  3260  				zRIL(_a, op_LGFI, regtmp(p), uint32(v), asm)
  3261  				zRRE(op_OGR, uint32(p.To.Reg), regtmp(p), asm)
  3262  			} else if int64(uint16(v)) == v {
  3263  				zRI(op_OILL, uint32(p.To.Reg), uint32(v), asm)
  3264  			} else {
  3265  				zRIL(_a, op_OILF, uint32(p.To.Reg), uint32(v), asm)
  3266  			}
  3267  		case AXOR:
  3268  			if int64(uint32(v)) != v { // needs sign extend
  3269  				zRIL(_a, op_LGFI, regtmp(p), uint32(v), asm)
  3270  				zRRE(op_XGR, uint32(p.To.Reg), regtmp(p), asm)
  3271  			} else {
  3272  				zRIL(_a, op_XILF, uint32(p.To.Reg), uint32(v), asm)
  3273  			}
  3274  		}
  3275  
  3276  	case 24: // 32-bit logical op $constant reg
  3277  		v := c.vregoff(&p.From)
  3278  		switch p.As {
  3279  		case AANDW:
  3280  			if uint32(v&0xffff0000) == 0xffff0000 {
  3281  				zRI(op_NILL, uint32(p.To.Reg), uint32(v), asm)
  3282  			} else if uint32(v&0x0000ffff) == 0x0000ffff {
  3283  				zRI(op_NILH, uint32(p.To.Reg), uint32(v)>>16, asm)
  3284  			} else {
  3285  				zRIL(_a, op_NILF, uint32(p.To.Reg), uint32(v), asm)
  3286  			}
  3287  		case AORW:
  3288  			if uint32(v&0xffff0000) == 0 {
  3289  				zRI(op_OILL, uint32(p.To.Reg), uint32(v), asm)
  3290  			} else if uint32(v&0x0000ffff) == 0 {
  3291  				zRI(op_OILH, uint32(p.To.Reg), uint32(v)>>16, asm)
  3292  			} else {
  3293  				zRIL(_a, op_OILF, uint32(p.To.Reg), uint32(v), asm)
  3294  			}
  3295  		case AXORW:
  3296  			zRIL(_a, op_XILF, uint32(p.To.Reg), uint32(v), asm)
  3297  		}
  3298  
  3299  	case 25: // load on condition (register)
  3300  		m3 := uint32(c.branchMask(p))
  3301  		var opcode uint32
  3302  		switch p.As {
  3303  		case ALOCR:
  3304  			opcode = op_LOCR
  3305  		case ALOCGR:
  3306  			opcode = op_LOCGR
  3307  		}
  3308  		zRRF(opcode, m3, 0, uint32(p.To.Reg), uint32(p.Reg), asm)
  3309  
  3310  	case 26: // MOVD $offset(base)(index), reg
  3311  		v := c.regoff(&p.From)
  3312  		r := p.From.Reg
  3313  		if r == 0 {
  3314  			r = REGSP
  3315  		}
  3316  		i := p.From.Index
  3317  		if v >= 0 && v < DISP12 {
  3318  			zRX(op_LA, uint32(p.To.Reg), uint32(r), uint32(i), uint32(v), asm)
  3319  		} else if v >= -DISP20/2 && v < DISP20/2 {
  3320  			zRXY(op_LAY, uint32(p.To.Reg), uint32(r), uint32(i), uint32(v), asm)
  3321  		} else {
  3322  			zRIL(_a, op_LGFI, regtmp(p), uint32(v), asm)
  3323  			zRX(op_LA, uint32(p.To.Reg), uint32(r), regtmp(p), uint32(i), asm)
  3324  		}
  3325  
  3326  	case 31: // dword
  3327  		wd := uint64(c.vregoff(&p.From))
  3328  		*asm = append(*asm,
  3329  			uint8(wd>>56),
  3330  			uint8(wd>>48),
  3331  			uint8(wd>>40),
  3332  			uint8(wd>>32),
  3333  			uint8(wd>>24),
  3334  			uint8(wd>>16),
  3335  			uint8(wd>>8),
  3336  			uint8(wd))
  3337  
  3338  	case 32: // float op freg freg
  3339  		var opcode uint32
  3340  		switch p.As {
  3341  		default:
  3342  			c.ctxt.Diag("invalid opcode")
  3343  		case AFADD:
  3344  			opcode = op_ADBR
  3345  		case AFADDS:
  3346  			opcode = op_AEBR
  3347  		case AFDIV:
  3348  			opcode = op_DDBR
  3349  		case AFDIVS:
  3350  			opcode = op_DEBR
  3351  		case AFMUL:
  3352  			opcode = op_MDBR
  3353  		case AFMULS:
  3354  			opcode = op_MEEBR
  3355  		case AFSUB:
  3356  			opcode = op_SDBR
  3357  		case AFSUBS:
  3358  			opcode = op_SEBR
  3359  		}
  3360  		zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3361  
  3362  	case 33: // float op [freg] freg
  3363  		r := p.From.Reg
  3364  		if oclass(&p.From) == C_NONE {
  3365  			r = p.To.Reg
  3366  		}
  3367  		var opcode uint32
  3368  		switch p.As {
  3369  		default:
  3370  		case AFABS:
  3371  			opcode = op_LPDBR
  3372  		case AFNABS:
  3373  			opcode = op_LNDBR
  3374  		case ALPDFR:
  3375  			opcode = op_LPDFR
  3376  		case ALNDFR:
  3377  			opcode = op_LNDFR
  3378  		case AFNEG:
  3379  			opcode = op_LCDFR
  3380  		case AFNEGS:
  3381  			opcode = op_LCEBR
  3382  		case ALCDBR:
  3383  			opcode = op_LCDBR
  3384  		case ALEDBR:
  3385  			opcode = op_LEDBR
  3386  		case ALDEBR:
  3387  			opcode = op_LDEBR
  3388  		case AFSQRT:
  3389  			opcode = op_SQDBR
  3390  		case AFSQRTS:
  3391  			opcode = op_SQEBR
  3392  		}
  3393  		zRRE(opcode, uint32(p.To.Reg), uint32(r), asm)
  3394  
  3395  	case 34: // float multiply-add freg freg freg
  3396  		var opcode uint32
  3397  		switch p.As {
  3398  		default:
  3399  			c.ctxt.Diag("invalid opcode")
  3400  		case AFMADD:
  3401  			opcode = op_MADBR
  3402  		case AFMADDS:
  3403  			opcode = op_MAEBR
  3404  		case AFMSUB:
  3405  			opcode = op_MSDBR
  3406  		case AFMSUBS:
  3407  			opcode = op_MSEBR
  3408  		}
  3409  		zRRD(opcode, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), asm)
  3410  
  3411  	case 35: // mov reg mem (no relocation)
  3412  		d2 := c.regoff(&p.To)
  3413  		b2 := p.To.Reg
  3414  		if b2 == 0 {
  3415  			b2 = REGSP
  3416  		}
  3417  		x2 := p.To.Index
  3418  		if d2 < -DISP20/2 || d2 >= DISP20/2 {
  3419  			zRIL(_a, op_LGFI, regtmp(p), uint32(d2), asm)
  3420  			if x2 != 0 {
  3421  				zRX(op_LA, regtmp(p), regtmp(p), uint32(x2), 0, asm)
  3422  			}
  3423  			x2 = int16(regtmp(p))
  3424  			d2 = 0
  3425  		}
  3426  		// Emits an RX instruction if an appropriate one exists and the displacement fits in 12 bits. Otherwise use an RXY instruction.
  3427  		if op, ok := c.zopstore12(p.As); ok && isU12(d2) {
  3428  			zRX(op, uint32(p.From.Reg), uint32(x2), uint32(b2), uint32(d2), asm)
  3429  		} else {
  3430  			zRXY(c.zopstore(p.As), uint32(p.From.Reg), uint32(x2), uint32(b2), uint32(d2), asm)
  3431  		}
  3432  
  3433  	case 36: // mov mem reg (no relocation)
  3434  		d2 := c.regoff(&p.From)
  3435  		b2 := p.From.Reg
  3436  		if b2 == 0 {
  3437  			b2 = REGSP
  3438  		}
  3439  		x2 := p.From.Index
  3440  		if d2 < -DISP20/2 || d2 >= DISP20/2 {
  3441  			zRIL(_a, op_LGFI, regtmp(p), uint32(d2), asm)
  3442  			if x2 != 0 {
  3443  				zRX(op_LA, regtmp(p), regtmp(p), uint32(x2), 0, asm)
  3444  			}
  3445  			x2 = int16(regtmp(p))
  3446  			d2 = 0
  3447  		}
  3448  		// Emits an RX instruction if an appropriate one exists and the displacement fits in 12 bits. Otherwise use an RXY instruction.
  3449  		if op, ok := c.zopload12(p.As); ok && isU12(d2) {
  3450  			zRX(op, uint32(p.To.Reg), uint32(x2), uint32(b2), uint32(d2), asm)
  3451  		} else {
  3452  			zRXY(c.zopload(p.As), uint32(p.To.Reg), uint32(x2), uint32(b2), uint32(d2), asm)
  3453  		}
  3454  
  3455  	case 40: // word/byte
  3456  		wd := uint32(c.regoff(&p.From))
  3457  		if p.As == AWORD { //WORD
  3458  			*asm = append(*asm, uint8(wd>>24), uint8(wd>>16), uint8(wd>>8), uint8(wd))
  3459  		} else { //BYTE
  3460  			*asm = append(*asm, uint8(wd))
  3461  		}
  3462  
  3463  	case 41: // branch on count
  3464  		r1 := p.From.Reg
  3465  		ri2 := (p.To.Target().Pc - p.Pc) >> 1
  3466  		if int64(int16(ri2)) != ri2 {
  3467  			c.ctxt.Diag("branch target too far away")
  3468  		}
  3469  		var opcode uint32
  3470  		switch p.As {
  3471  		case ABRCT:
  3472  			opcode = op_BRCT
  3473  		case ABRCTG:
  3474  			opcode = op_BRCTG
  3475  		}
  3476  		zRI(opcode, uint32(r1), uint32(ri2), asm)
  3477  
  3478  	case 47: // negate [reg] reg
  3479  		r := p.From.Reg
  3480  		if r == 0 {
  3481  			r = p.To.Reg
  3482  		}
  3483  		switch p.As {
  3484  		case ANEG:
  3485  			zRRE(op_LCGR, uint32(p.To.Reg), uint32(r), asm)
  3486  		case ANEGW:
  3487  			zRRE(op_LCGFR, uint32(p.To.Reg), uint32(r), asm)
  3488  		}
  3489  
  3490  	case 48: // floating-point round to integer
  3491  		m3 := c.vregoff(&p.From)
  3492  		if 0 > m3 || m3 > 7 {
  3493  			c.ctxt.Diag("mask (%v) must be in the range [0, 7]", m3)
  3494  		}
  3495  		var opcode uint32
  3496  		switch p.As {
  3497  		case AFIEBR:
  3498  			opcode = op_FIEBR
  3499  		case AFIDBR:
  3500  			opcode = op_FIDBR
  3501  		}
  3502  		zRRF(opcode, uint32(m3), 0, uint32(p.To.Reg), uint32(p.Reg), asm)
  3503  
  3504  	case 49: // copysign
  3505  		zRRF(op_CPSDR, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(p.Reg), asm)
  3506  
  3507  	case 50: // load and test
  3508  		var opcode uint32
  3509  		switch p.As {
  3510  		case ALTEBR:
  3511  			opcode = op_LTEBR
  3512  		case ALTDBR:
  3513  			opcode = op_LTDBR
  3514  		}
  3515  		zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3516  
  3517  	case 51: // test data class (immediate only)
  3518  		var opcode uint32
  3519  		switch p.As {
  3520  		case ATCEB:
  3521  			opcode = op_TCEB
  3522  		case ATCDB:
  3523  			opcode = op_TCDB
  3524  		}
  3525  		d2 := c.regoff(&p.To)
  3526  		zRXE(opcode, uint32(p.From.Reg), 0, 0, uint32(d2), 0, asm)
  3527  
  3528  	case 62: // equivalent of Mul64 in math/bits
  3529  		zRRE(op_MLGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3530  
  3531  	case 66:
  3532  		zRR(op_BCR, uint32(Never), 0, asm)
  3533  
  3534  	case 67: // fmov $0 freg
  3535  		var opcode uint32
  3536  		switch p.As {
  3537  		case AFMOVS:
  3538  			opcode = op_LZER
  3539  		case AFMOVD:
  3540  			opcode = op_LZDR
  3541  		}
  3542  		zRRE(opcode, uint32(p.To.Reg), 0, asm)
  3543  
  3544  	case 68: // movw areg reg
  3545  		zRRE(op_EAR, uint32(p.To.Reg), uint32(p.From.Reg-REG_AR0), asm)
  3546  
  3547  	case 69: // movw reg areg
  3548  		zRRE(op_SAR, uint32(p.To.Reg-REG_AR0), uint32(p.From.Reg), asm)
  3549  
  3550  	case 70: // cmp reg reg
  3551  		if p.As == ACMPW || p.As == ACMPWU {
  3552  			zRR(c.zoprr(p.As), uint32(p.From.Reg), uint32(p.To.Reg), asm)
  3553  		} else {
  3554  			zRRE(c.zoprre(p.As), uint32(p.From.Reg), uint32(p.To.Reg), asm)
  3555  		}
  3556  
  3557  	case 71: // cmp reg $constant
  3558  		v := c.vregoff(&p.To)
  3559  		switch p.As {
  3560  		case ACMP, ACMPW:
  3561  			if int64(int32(v)) != v {
  3562  				c.ctxt.Diag("%v overflows an int32", v)
  3563  			}
  3564  		case ACMPU, ACMPWU:
  3565  			if int64(uint32(v)) != v {
  3566  				c.ctxt.Diag("%v overflows a uint32", v)
  3567  			}
  3568  		}
  3569  		if p.As == ACMP && int64(int16(v)) == v {
  3570  			zRI(op_CGHI, uint32(p.From.Reg), uint32(v), asm)
  3571  		} else if p.As == ACMPW && int64(int16(v)) == v {
  3572  			zRI(op_CHI, uint32(p.From.Reg), uint32(v), asm)
  3573  		} else {
  3574  			zRIL(_a, c.zopril(p.As), uint32(p.From.Reg), uint32(v), asm)
  3575  		}
  3576  
  3577  	case 72: // mov $constant mem
  3578  		v := c.regoff(&p.From)
  3579  		d := c.regoff(&p.To)
  3580  		r := p.To.Reg
  3581  		if p.To.Index != 0 {
  3582  			c.ctxt.Diag("cannot use index register")
  3583  		}
  3584  		if r == 0 {
  3585  			r = REGSP
  3586  		}
  3587  		var opcode uint32
  3588  		switch p.As {
  3589  		case AMOVD:
  3590  			opcode = op_MVGHI
  3591  		case AMOVW, AMOVWZ:
  3592  			opcode = op_MVHI
  3593  		case AMOVH, AMOVHZ:
  3594  			opcode = op_MVHHI
  3595  		case AMOVB, AMOVBZ:
  3596  			opcode = op_MVI
  3597  		}
  3598  		if d < 0 || d >= DISP12 {
  3599  			if r == int16(regtmp(p)) {
  3600  				c.ctxt.Diag("displacement must be in range [0, 4096) to use %v", r)
  3601  			}
  3602  			if d >= -DISP20/2 && d < DISP20/2 {
  3603  				if opcode == op_MVI {
  3604  					opcode = op_MVIY
  3605  				} else {
  3606  					zRXY(op_LAY, uint32(regtmp(p)), 0, uint32(r), uint32(d), asm)
  3607  					r = int16(regtmp(p))
  3608  					d = 0
  3609  				}
  3610  			} else {
  3611  				zRIL(_a, op_LGFI, regtmp(p), uint32(d), asm)
  3612  				zRX(op_LA, regtmp(p), regtmp(p), uint32(r), 0, asm)
  3613  				r = int16(regtmp(p))
  3614  				d = 0
  3615  			}
  3616  		}
  3617  		switch opcode {
  3618  		case op_MVI:
  3619  			zSI(opcode, uint32(v), uint32(r), uint32(d), asm)
  3620  		case op_MVIY:
  3621  			zSIY(opcode, uint32(v), uint32(r), uint32(d), asm)
  3622  		default:
  3623  			zSIL(opcode, uint32(r), uint32(d), uint32(v), asm)
  3624  		}
  3625  
  3626  	case 73: //Illegal opcode with SIGTRAP Exception
  3627  		zE(op_BRRK, asm)
  3628  
  3629  	case 74: // mov reg addr (including relocation)
  3630  		i2 := c.regoff(&p.To)
  3631  		switch p.As {
  3632  		case AMOVD:
  3633  			zRIL(_b, op_STGRL, uint32(p.From.Reg), 0, asm)
  3634  		case AMOVW, AMOVWZ: // The zero extension doesn't affect store instructions
  3635  			zRIL(_b, op_STRL, uint32(p.From.Reg), 0, asm)
  3636  		case AMOVH, AMOVHZ: // The zero extension doesn't affect store instructions
  3637  			zRIL(_b, op_STHRL, uint32(p.From.Reg), 0, asm)
  3638  		case AMOVB, AMOVBZ: // The zero extension doesn't affect store instructions
  3639  			zRIL(_b, op_LARL, regtmp(p), 0, asm)
  3640  			adj := uint32(0) // adjustment needed for odd addresses
  3641  			if i2&1 != 0 {
  3642  				i2 -= 1
  3643  				adj = 1
  3644  			}
  3645  			zRX(op_STC, uint32(p.From.Reg), 0, regtmp(p), adj, asm)
  3646  		case AFMOVD:
  3647  			zRIL(_b, op_LARL, regtmp(p), 0, asm)
  3648  			zRX(op_STD, uint32(p.From.Reg), 0, regtmp(p), 0, asm)
  3649  		case AFMOVS:
  3650  			zRIL(_b, op_LARL, regtmp(p), 0, asm)
  3651  			zRX(op_STE, uint32(p.From.Reg), 0, regtmp(p), 0, asm)
  3652  		}
  3653  		c.addrilreloc(p.To.Sym, int64(i2))
  3654  
  3655  	case 75: // mov addr reg (including relocation)
  3656  		i2 := c.regoff(&p.From)
  3657  		switch p.As {
  3658  		case AMOVD:
  3659  			if i2&1 != 0 {
  3660  				zRIL(_b, op_LARL, regtmp(p), 0, asm)
  3661  				zRXY(op_LG, uint32(p.To.Reg), regtmp(p), 0, 1, asm)
  3662  				i2 -= 1
  3663  			} else {
  3664  				zRIL(_b, op_LGRL, uint32(p.To.Reg), 0, asm)
  3665  			}
  3666  		case AMOVW:
  3667  			zRIL(_b, op_LGFRL, uint32(p.To.Reg), 0, asm)
  3668  		case AMOVWZ:
  3669  			zRIL(_b, op_LLGFRL, uint32(p.To.Reg), 0, asm)
  3670  		case AMOVH:
  3671  			zRIL(_b, op_LGHRL, uint32(p.To.Reg), 0, asm)
  3672  		case AMOVHZ:
  3673  			zRIL(_b, op_LLGHRL, uint32(p.To.Reg), 0, asm)
  3674  		case AMOVB, AMOVBZ:
  3675  			zRIL(_b, op_LARL, regtmp(p), 0, asm)
  3676  			adj := uint32(0) // adjustment needed for odd addresses
  3677  			if i2&1 != 0 {
  3678  				i2 -= 1
  3679  				adj = 1
  3680  			}
  3681  			switch p.As {
  3682  			case AMOVB:
  3683  				zRXY(op_LGB, uint32(p.To.Reg), 0, regtmp(p), adj, asm)
  3684  			case AMOVBZ:
  3685  				zRXY(op_LLGC, uint32(p.To.Reg), 0, regtmp(p), adj, asm)
  3686  			}
  3687  		case AFMOVD:
  3688  			zRIL(_a, op_LARL, regtmp(p), 0, asm)
  3689  			zRX(op_LD, uint32(p.To.Reg), 0, regtmp(p), 0, asm)
  3690  		case AFMOVS:
  3691  			zRIL(_a, op_LARL, regtmp(p), 0, asm)
  3692  			zRX(op_LE, uint32(p.To.Reg), 0, regtmp(p), 0, asm)
  3693  		}
  3694  		c.addrilreloc(p.From.Sym, int64(i2))
  3695  
  3696  	case 76: // set program mask
  3697  		zRR(op_SPM, uint32(p.From.Reg), 0, asm)
  3698  
  3699  	case 77: // syscall $constant
  3700  		if p.From.Offset > 255 || p.From.Offset < 1 {
  3701  			c.ctxt.Diag("illegal system call; system call number out of range: %v", p)
  3702  			zE(op_TRAP2, asm) // trap always
  3703  		} else {
  3704  			zI(op_SVC, uint32(p.From.Offset), asm)
  3705  		}
  3706  
  3707  	case 78: // undef
  3708  		// "An instruction consisting entirely of binary 0s is guaranteed
  3709  		// always to be an illegal instruction."
  3710  		*asm = append(*asm, 0, 0, 0, 0)
  3711  
  3712  	case 79: // compare and swap reg reg reg
  3713  		v := c.regoff(&p.To)
  3714  		if v < 0 {
  3715  			v = 0
  3716  		}
  3717  		if p.As == ACS {
  3718  			zRS(op_CS, uint32(p.From.Reg), uint32(p.Reg), uint32(p.To.Reg), uint32(v), asm)
  3719  		} else if p.As == ACSG {
  3720  			zRSY(op_CSG, uint32(p.From.Reg), uint32(p.Reg), uint32(p.To.Reg), uint32(v), asm)
  3721  		}
  3722  
  3723  	case 80: // sync
  3724  		zRR(op_BCR, 14, 0, asm) // fast-BCR-serialization
  3725  
  3726  	case 81: // float to fixed and fixed to float moves (no conversion)
  3727  		switch p.As {
  3728  		case ALDGR:
  3729  			zRRE(op_LDGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3730  		case ALGDR:
  3731  			zRRE(op_LGDR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3732  		}
  3733  
  3734  	case 82: // fixed to float conversion
  3735  		var opcode uint32
  3736  		switch p.As {
  3737  		default:
  3738  			log.Fatalf("unexpected opcode %v", p.As)
  3739  		case ACEFBRA:
  3740  			opcode = op_CEFBRA
  3741  		case ACDFBRA:
  3742  			opcode = op_CDFBRA
  3743  		case ACEGBRA:
  3744  			opcode = op_CEGBRA
  3745  		case ACDGBRA:
  3746  			opcode = op_CDGBRA
  3747  		case ACELFBR:
  3748  			opcode = op_CELFBR
  3749  		case ACDLFBR:
  3750  			opcode = op_CDLFBR
  3751  		case ACELGBR:
  3752  			opcode = op_CELGBR
  3753  		case ACDLGBR:
  3754  			opcode = op_CDLGBR
  3755  		}
  3756  		// set immediate operand M3 to 0 to use the default BFP rounding mode
  3757  		// (usually round to nearest, ties to even)
  3758  		// TODO(mundaym): should this be fixed at round to nearest, ties to even?
  3759  		// M4 is reserved and must be 0
  3760  		zRRF(opcode, 0, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3761  
  3762  	case 83: // float to fixed conversion
  3763  		var opcode uint32
  3764  		switch p.As {
  3765  		default:
  3766  			log.Fatalf("unexpected opcode %v", p.As)
  3767  		case ACFEBRA:
  3768  			opcode = op_CFEBRA
  3769  		case ACFDBRA:
  3770  			opcode = op_CFDBRA
  3771  		case ACGEBRA:
  3772  			opcode = op_CGEBRA
  3773  		case ACGDBRA:
  3774  			opcode = op_CGDBRA
  3775  		case ACLFEBR:
  3776  			opcode = op_CLFEBR
  3777  		case ACLFDBR:
  3778  			opcode = op_CLFDBR
  3779  		case ACLGEBR:
  3780  			opcode = op_CLGEBR
  3781  		case ACLGDBR:
  3782  			opcode = op_CLGDBR
  3783  		}
  3784  		// set immediate operand M3 to 5 for rounding toward zero (required by Go spec)
  3785  		// M4 is reserved and must be 0
  3786  		zRRF(opcode, 5, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3787  
  3788  	case 84: // storage-and-storage operations $length mem mem
  3789  		l := c.regoff(&p.From)
  3790  		if l < 1 || l > 256 {
  3791  			c.ctxt.Diag("number of bytes (%v) not in range [1,256]", l)
  3792  		}
  3793  		if p.GetFrom3().Index != 0 || p.To.Index != 0 {
  3794  			c.ctxt.Diag("cannot use index reg")
  3795  		}
  3796  		b1 := p.To.Reg
  3797  		b2 := p.GetFrom3().Reg
  3798  		if b1 == 0 {
  3799  			b1 = REGSP
  3800  		}
  3801  		if b2 == 0 {
  3802  			b2 = REGSP
  3803  		}
  3804  		d1 := c.regoff(&p.To)
  3805  		d2 := c.regoff(p.GetFrom3())
  3806  		if d1 < 0 || d1 >= DISP12 {
  3807  			if b2 == int16(regtmp(p)) {
  3808  				c.ctxt.Diag("regtmp(p) conflict")
  3809  			}
  3810  			if b1 != int16(regtmp(p)) {
  3811  				zRRE(op_LGR, regtmp(p), uint32(b1), asm)
  3812  			}
  3813  			zRIL(_a, op_AGFI, regtmp(p), uint32(d1), asm)
  3814  			if d1 == d2 && b1 == b2 {
  3815  				d2 = 0
  3816  				b2 = int16(regtmp(p))
  3817  			}
  3818  			d1 = 0
  3819  			b1 = int16(regtmp(p))
  3820  		}
  3821  		if d2 < 0 || d2 >= DISP12 {
  3822  			if b1 == REGTMP2 {
  3823  				c.ctxt.Diag("REGTMP2 conflict")
  3824  			}
  3825  			if b2 != REGTMP2 {
  3826  				zRRE(op_LGR, REGTMP2, uint32(b2), asm)
  3827  			}
  3828  			zRIL(_a, op_AGFI, REGTMP2, uint32(d2), asm)
  3829  			d2 = 0
  3830  			b2 = REGTMP2
  3831  		}
  3832  		var opcode uint32
  3833  		switch p.As {
  3834  		default:
  3835  			c.ctxt.Diag("unexpected opcode %v", p.As)
  3836  		case AMVC:
  3837  			opcode = op_MVC
  3838  		case AMVCIN:
  3839  			opcode = op_MVCIN
  3840  		case ACLC:
  3841  			opcode = op_CLC
  3842  			// swap operand order for CLC so that it matches CMP
  3843  			b1, b2 = b2, b1
  3844  			d1, d2 = d2, d1
  3845  		case AXC:
  3846  			opcode = op_XC
  3847  		case AOC:
  3848  			opcode = op_OC
  3849  		case ANC:
  3850  			opcode = op_NC
  3851  		}
  3852  		zSS(_a, opcode, uint32(l-1), 0, uint32(b1), uint32(d1), uint32(b2), uint32(d2), asm)
  3853  
  3854  	case 85: // load address relative long
  3855  		v := c.regoff(&p.From)
  3856  		if p.From.Sym == nil {
  3857  			if (v & 1) != 0 {
  3858  				c.ctxt.Diag("cannot use LARL with odd offset: %v", v)
  3859  			}
  3860  		} else {
  3861  			c.addrilreloc(p.From.Sym, int64(v))
  3862  			v = 0
  3863  		}
  3864  		zRIL(_b, op_LARL, uint32(p.To.Reg), uint32(v>>1), asm)
  3865  
  3866  	case 86: // load address
  3867  		d := c.vregoff(&p.From)
  3868  		x := p.From.Index
  3869  		b := p.From.Reg
  3870  		if b == 0 {
  3871  			b = REGSP
  3872  		}
  3873  		switch p.As {
  3874  		case ALA:
  3875  			zRX(op_LA, uint32(p.To.Reg), uint32(x), uint32(b), uint32(d), asm)
  3876  		case ALAY:
  3877  			zRXY(op_LAY, uint32(p.To.Reg), uint32(x), uint32(b), uint32(d), asm)
  3878  		}
  3879  
  3880  	case 87: // execute relative long
  3881  		v := c.vregoff(&p.From)
  3882  		if p.From.Sym == nil {
  3883  			if v&1 != 0 {
  3884  				c.ctxt.Diag("cannot use EXRL with odd offset: %v", v)
  3885  			}
  3886  		} else {
  3887  			c.addrilreloc(p.From.Sym, v)
  3888  			v = 0
  3889  		}
  3890  		zRIL(_b, op_EXRL, uint32(p.To.Reg), uint32(v>>1), asm)
  3891  
  3892  	case 88: // store clock
  3893  		var opcode uint32
  3894  		switch p.As {
  3895  		case ASTCK:
  3896  			opcode = op_STCK
  3897  		case ASTCKC:
  3898  			opcode = op_STCKC
  3899  		case ASTCKE:
  3900  			opcode = op_STCKE
  3901  		case ASTCKF:
  3902  			opcode = op_STCKF
  3903  		}
  3904  		v := c.vregoff(&p.To)
  3905  		r := p.To.Reg
  3906  		if r == 0 {
  3907  			r = REGSP
  3908  		}
  3909  		zS(opcode, uint32(r), uint32(v), asm)
  3910  
  3911  	case 89: // compare and branch reg reg
  3912  		var v int32
  3913  		if p.To.Target() != nil {
  3914  			v = int32((p.To.Target().Pc - p.Pc) >> 1)
  3915  		}
  3916  
  3917  		// Some instructions take a mask as the first argument.
  3918  		r1, r2 := p.From.Reg, p.Reg
  3919  		if p.From.Type == obj.TYPE_CONST {
  3920  			r1, r2 = p.Reg, p.RestArgs[0].Reg
  3921  		}
  3922  		m3 := uint32(c.branchMask(p))
  3923  
  3924  		var opcode uint32
  3925  		switch p.As {
  3926  		case ACRJ:
  3927  			// COMPARE AND BRANCH RELATIVE (32)
  3928  			opcode = op_CRJ
  3929  		case ACGRJ, ACMPBEQ, ACMPBGE, ACMPBGT, ACMPBLE, ACMPBLT, ACMPBNE:
  3930  			// COMPARE AND BRANCH RELATIVE (64)
  3931  			opcode = op_CGRJ
  3932  		case ACLRJ:
  3933  			// COMPARE LOGICAL AND BRANCH RELATIVE (32)
  3934  			opcode = op_CLRJ
  3935  		case ACLGRJ, ACMPUBEQ, ACMPUBGE, ACMPUBGT, ACMPUBLE, ACMPUBLT, ACMPUBNE:
  3936  			// COMPARE LOGICAL AND BRANCH RELATIVE (64)
  3937  			opcode = op_CLGRJ
  3938  		}
  3939  
  3940  		if int32(int16(v)) != v {
  3941  			// The branch is too far for one instruction so crack
  3942  			// `CMPBEQ x, y, target` into:
  3943  			//
  3944  			//     CMPBNE x, y, 2(PC)
  3945  			//     BR     target
  3946  			//
  3947  			// Note that the instruction sequence MUST NOT clobber
  3948  			// the condition code.
  3949  			m3 ^= 0xe // invert 3-bit mask
  3950  			zRIE(_b, opcode, uint32(r1), uint32(r2), uint32(sizeRIE+sizeRIL)/2, 0, 0, m3, 0, asm)
  3951  			zRIL(_c, op_BRCL, uint32(Always), uint32(v-sizeRIE/2), asm)
  3952  		} else {
  3953  			zRIE(_b, opcode, uint32(r1), uint32(r2), uint32(v), 0, 0, m3, 0, asm)
  3954  		}
  3955  
  3956  	case 90: // compare and branch reg $constant
  3957  		var v int32
  3958  		if p.To.Target() != nil {
  3959  			v = int32((p.To.Target().Pc - p.Pc) >> 1)
  3960  		}
  3961  
  3962  		// Some instructions take a mask as the first argument.
  3963  		r1, i2 := p.From.Reg, p.RestArgs[0].Offset
  3964  		if p.From.Type == obj.TYPE_CONST {
  3965  			r1 = p.Reg
  3966  		}
  3967  		m3 := uint32(c.branchMask(p))
  3968  
  3969  		var opcode uint32
  3970  		switch p.As {
  3971  		case ACIJ:
  3972  			opcode = op_CIJ
  3973  		case ACGIJ, ACMPBEQ, ACMPBGE, ACMPBGT, ACMPBLE, ACMPBLT, ACMPBNE:
  3974  			opcode = op_CGIJ
  3975  		case ACLIJ:
  3976  			opcode = op_CLIJ
  3977  		case ACLGIJ, ACMPUBEQ, ACMPUBGE, ACMPUBGT, ACMPUBLE, ACMPUBLT, ACMPUBNE:
  3978  			opcode = op_CLGIJ
  3979  		}
  3980  		if int32(int16(v)) != v {
  3981  			// The branch is too far for one instruction so crack
  3982  			// `CMPBEQ x, $0, target` into:
  3983  			//
  3984  			//     CMPBNE x, $0, 2(PC)
  3985  			//     BR     target
  3986  			//
  3987  			// Note that the instruction sequence MUST NOT clobber
  3988  			// the condition code.
  3989  			m3 ^= 0xe // invert 3-bit mask
  3990  			zRIE(_c, opcode, uint32(r1), m3, uint32(sizeRIE+sizeRIL)/2, 0, 0, 0, uint32(i2), asm)
  3991  			zRIL(_c, op_BRCL, uint32(Always), uint32(v-sizeRIE/2), asm)
  3992  		} else {
  3993  			zRIE(_c, opcode, uint32(r1), m3, uint32(v), 0, 0, 0, uint32(i2), asm)
  3994  		}
  3995  
  3996  	case 91: // test under mask (immediate)
  3997  		var opcode uint32
  3998  		switch p.As {
  3999  		case ATMHH:
  4000  			opcode = op_TMHH
  4001  		case ATMHL:
  4002  			opcode = op_TMHL
  4003  		case ATMLH:
  4004  			opcode = op_TMLH
  4005  		case ATMLL:
  4006  			opcode = op_TMLL
  4007  		}
  4008  		zRI(opcode, uint32(p.From.Reg), uint32(c.vregoff(&p.To)), asm)
  4009  
  4010  	case 92: // insert program mask
  4011  		zRRE(op_IPM, uint32(p.From.Reg), 0, asm)
  4012  
  4013  	case 93: // GOT lookup
  4014  		v := c.vregoff(&p.To)
  4015  		if v != 0 {
  4016  			c.ctxt.Diag("invalid offset against GOT slot %v", p)
  4017  		}
  4018  		zRIL(_b, op_LGRL, uint32(p.To.Reg), 0, asm)
  4019  		c.cursym.AddRel(c.ctxt, obj.Reloc{
  4020  			Type: objabi.R_GOTPCREL,
  4021  			Off:  int32(c.pc + 2),
  4022  			Siz:  4,
  4023  			Sym:  p.From.Sym,
  4024  			Add:  2 + 4,
  4025  		})
  4026  
  4027  	case 94: // TLS local exec model
  4028  		zRIL(_b, op_LARL, regtmp(p), (sizeRIL+sizeRXY+sizeRI)>>1, asm)
  4029  		zRXY(op_LG, uint32(p.To.Reg), regtmp(p), 0, 0, asm)
  4030  		zRI(op_BRC, 0xF, (sizeRI+8)>>1, asm)
  4031  		*asm = append(*asm, 0, 0, 0, 0, 0, 0, 0, 0)
  4032  		c.cursym.AddRel(c.ctxt, obj.Reloc{
  4033  			Type: objabi.R_TLS_LE,
  4034  			Off:  int32(c.pc + sizeRIL + sizeRXY + sizeRI),
  4035  			Siz:  8,
  4036  			Sym:  p.From.Sym,
  4037  		})
  4038  
  4039  	case 95: // TLS initial exec model
  4040  		// Assembly                   | Relocation symbol    | Done Here?
  4041  		// --------------------------------------------------------------
  4042  		// ear  %r11, %a0             |                      |
  4043  		// sllg %r11, %r11, 32        |                      |
  4044  		// ear  %r11, %a1             |                      |
  4045  		// larl %r10, <var>@indntpoff | R_390_TLS_IEENT      | Y
  4046  		// lg   %r10, 0(%r10)         | R_390_TLS_LOAD (tag) | Y
  4047  		// la   %r10, 0(%r10, %r11)   |                      |
  4048  		// --------------------------------------------------------------
  4049  
  4050  		// R_390_TLS_IEENT
  4051  		zRIL(_b, op_LARL, regtmp(p), 0, asm)
  4052  		c.cursym.AddRel(c.ctxt, obj.Reloc{
  4053  			Type: objabi.R_TLS_IE,
  4054  			Off:  int32(c.pc + 2),
  4055  			Siz:  4,
  4056  			Sym:  p.From.Sym,
  4057  			Add:  2 + 4,
  4058  		})
  4059  
  4060  		// R_390_TLS_LOAD
  4061  		zRXY(op_LGF, uint32(p.To.Reg), regtmp(p), 0, 0, asm)
  4062  		// TODO(mundaym): add R_390_TLS_LOAD relocation here
  4063  		// not strictly required but might allow the linker to optimize
  4064  
  4065  	case 96: // clear macro
  4066  		length := c.vregoff(&p.From)
  4067  		offset := c.vregoff(&p.To)
  4068  		reg := p.To.Reg
  4069  		if reg == 0 {
  4070  			reg = REGSP
  4071  		}
  4072  		if length <= 0 {
  4073  			c.ctxt.Diag("cannot CLEAR %d bytes, must be greater than 0", length)
  4074  		}
  4075  		for length > 0 {
  4076  			if offset < 0 || offset >= DISP12 {
  4077  				if offset >= -DISP20/2 && offset < DISP20/2 {
  4078  					zRXY(op_LAY, regtmp(p), uint32(reg), 0, uint32(offset), asm)
  4079  				} else {
  4080  					if reg != int16(regtmp(p)) {
  4081  						zRRE(op_LGR, regtmp(p), uint32(reg), asm)
  4082  					}
  4083  					zRIL(_a, op_AGFI, regtmp(p), uint32(offset), asm)
  4084  				}
  4085  				reg = int16(regtmp(p))
  4086  				offset = 0
  4087  			}
  4088  			size := length
  4089  			if size > 256 {
  4090  				size = 256
  4091  			}
  4092  
  4093  			switch size {
  4094  			case 1:
  4095  				zSI(op_MVI, 0, uint32(reg), uint32(offset), asm)
  4096  			case 2:
  4097  				zSIL(op_MVHHI, uint32(reg), uint32(offset), 0, asm)
  4098  			case 4:
  4099  				zSIL(op_MVHI, uint32(reg), uint32(offset), 0, asm)
  4100  			case 8:
  4101  				zSIL(op_MVGHI, uint32(reg), uint32(offset), 0, asm)
  4102  			default:
  4103  				zSS(_a, op_XC, uint32(size-1), 0, uint32(reg), uint32(offset), uint32(reg), uint32(offset), asm)
  4104  			}
  4105  
  4106  			length -= size
  4107  			offset += size
  4108  		}
  4109  
  4110  	case 97: // store multiple
  4111  		rstart := p.From.Reg
  4112  		rend := p.Reg
  4113  		offset := c.regoff(&p.To)
  4114  		reg := p.To.Reg
  4115  		if reg == 0 {
  4116  			reg = REGSP
  4117  		}
  4118  		if offset < -DISP20/2 || offset >= DISP20/2 {
  4119  			if reg != int16(regtmp(p)) {
  4120  				zRRE(op_LGR, regtmp(p), uint32(reg), asm)
  4121  			}
  4122  			zRIL(_a, op_AGFI, regtmp(p), uint32(offset), asm)
  4123  			reg = int16(regtmp(p))
  4124  			offset = 0
  4125  		}
  4126  		switch p.As {
  4127  		case ASTMY:
  4128  			if offset >= 0 && offset < DISP12 {
  4129  				zRS(op_STM, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  4130  			} else {
  4131  				zRSY(op_STMY, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  4132  			}
  4133  		case ASTMG:
  4134  			zRSY(op_STMG, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  4135  		}
  4136  
  4137  	case 98: // load multiple
  4138  		rstart := p.Reg
  4139  		rend := p.To.Reg
  4140  		offset := c.regoff(&p.From)
  4141  		reg := p.From.Reg
  4142  		if reg == 0 {
  4143  			reg = REGSP
  4144  		}
  4145  		if offset < -DISP20/2 || offset >= DISP20/2 {
  4146  			if reg != int16(regtmp(p)) {
  4147  				zRRE(op_LGR, regtmp(p), uint32(reg), asm)
  4148  			}
  4149  			zRIL(_a, op_AGFI, regtmp(p), uint32(offset), asm)
  4150  			reg = int16(regtmp(p))
  4151  			offset = 0
  4152  		}
  4153  		switch p.As {
  4154  		case ALMY:
  4155  			if offset >= 0 && offset < DISP12 {
  4156  				zRS(op_LM, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  4157  			} else {
  4158  				zRSY(op_LMY, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  4159  			}
  4160  		case ALMG:
  4161  			zRSY(op_LMG, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  4162  		}
  4163  
  4164  	case 99: // interlocked load and op
  4165  		if p.To.Index != 0 {
  4166  			c.ctxt.Diag("cannot use indexed address")
  4167  		}
  4168  		offset := c.regoff(&p.To)
  4169  		if offset < -DISP20/2 || offset >= DISP20/2 {
  4170  			c.ctxt.Diag("%v does not fit into 20-bit signed integer", offset)
  4171  		}
  4172  		var opcode uint32
  4173  		switch p.As {
  4174  		case ALAA:
  4175  			opcode = op_LAA
  4176  		case ALAAG:
  4177  			opcode = op_LAAG
  4178  		case ALAAL:
  4179  			opcode = op_LAAL
  4180  		case ALAALG:
  4181  			opcode = op_LAALG
  4182  		case ALAN:
  4183  			opcode = op_LAN
  4184  		case ALANG:
  4185  			opcode = op_LANG
  4186  		case ALAX:
  4187  			opcode = op_LAX
  4188  		case ALAXG:
  4189  			opcode = op_LAXG
  4190  		case ALAO:
  4191  			opcode = op_LAO
  4192  		case ALAOG:
  4193  			opcode = op_LAOG
  4194  		}
  4195  		zRSY(opcode, uint32(p.Reg), uint32(p.From.Reg), uint32(p.To.Reg), uint32(offset), asm)
  4196  
  4197  	case 100: // VRX STORE
  4198  		op, m3, _ := vop(p.As)
  4199  		v1 := p.From.Reg
  4200  		if p.Reg != 0 {
  4201  			m3 = uint32(c.vregoff(&p.From))
  4202  			v1 = p.Reg
  4203  		}
  4204  		b2 := p.To.Reg
  4205  		if b2 == 0 {
  4206  			b2 = REGSP
  4207  		}
  4208  		d2 := uint32(c.vregoff(&p.To))
  4209  		zVRX(op, uint32(v1), uint32(p.To.Index), uint32(b2), d2, m3, asm)
  4210  
  4211  	case 101: // VRX LOAD
  4212  		op, m3, _ := vop(p.As)
  4213  		src := &p.From
  4214  		if p.GetFrom3() != nil {
  4215  			m3 = uint32(c.vregoff(&p.From))
  4216  			src = p.GetFrom3()
  4217  		}
  4218  		b2 := src.Reg
  4219  		if b2 == 0 {
  4220  			b2 = REGSP
  4221  		}
  4222  		d2 := uint32(c.vregoff(src))
  4223  		zVRX(op, uint32(p.To.Reg), uint32(src.Index), uint32(b2), d2, m3, asm)
  4224  
  4225  	case 102: // VRV SCATTER
  4226  		op, _, _ := vop(p.As)
  4227  		m3 := uint32(c.vregoff(&p.From))
  4228  		b2 := p.To.Reg
  4229  		if b2 == 0 {
  4230  			b2 = REGSP
  4231  		}
  4232  		d2 := uint32(c.vregoff(&p.To))
  4233  		zVRV(op, uint32(p.Reg), uint32(p.To.Index), uint32(b2), d2, m3, asm)
  4234  
  4235  	case 103: // VRV GATHER
  4236  		op, _, _ := vop(p.As)
  4237  		m3 := uint32(c.vregoff(&p.From))
  4238  		b2 := p.GetFrom3().Reg
  4239  		if b2 == 0 {
  4240  			b2 = REGSP
  4241  		}
  4242  		d2 := uint32(c.vregoff(p.GetFrom3()))
  4243  		zVRV(op, uint32(p.To.Reg), uint32(p.GetFrom3().Index), uint32(b2), d2, m3, asm)
  4244  
  4245  	case 104: // VRS SHIFT/ROTATE and LOAD GR FROM VR ELEMENT
  4246  		op, m4, _ := vop(p.As)
  4247  		fr := p.Reg
  4248  		if fr == 0 {
  4249  			fr = p.To.Reg
  4250  		}
  4251  		bits := uint32(c.vregoff(&p.From))
  4252  		zVRS(op, uint32(p.To.Reg), uint32(fr), uint32(p.From.Reg), bits, m4, asm)
  4253  
  4254  	case 105: // VRS STORE MULTIPLE
  4255  		op, _, _ := vop(p.As)
  4256  		offset := uint32(c.vregoff(&p.To))
  4257  		reg := p.To.Reg
  4258  		if reg == 0 {
  4259  			reg = REGSP
  4260  		}
  4261  		zVRS(op, uint32(p.From.Reg), uint32(p.Reg), uint32(reg), offset, 0, asm)
  4262  
  4263  	case 106: // VRS LOAD MULTIPLE
  4264  		op, _, _ := vop(p.As)
  4265  		offset := uint32(c.vregoff(&p.From))
  4266  		reg := p.From.Reg
  4267  		if reg == 0 {
  4268  			reg = REGSP
  4269  		}
  4270  		zVRS(op, uint32(p.Reg), uint32(p.To.Reg), uint32(reg), offset, 0, asm)
  4271  
  4272  	case 107: // VRS STORE WITH LENGTH
  4273  		op, _, _ := vop(p.As)
  4274  		offset := uint32(c.vregoff(&p.To))
  4275  		reg := p.To.Reg
  4276  		if reg == 0 {
  4277  			reg = REGSP
  4278  		}
  4279  		zVRS(op, uint32(p.Reg), uint32(p.From.Reg), uint32(reg), offset, 0, asm)
  4280  
  4281  	case 108: // VRS LOAD WITH LENGTH
  4282  		op, _, _ := vop(p.As)
  4283  		offset := uint32(c.vregoff(p.GetFrom3()))
  4284  		reg := p.GetFrom3().Reg
  4285  		if reg == 0 {
  4286  			reg = REGSP
  4287  		}
  4288  		zVRS(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(reg), offset, 0, asm)
  4289  
  4290  	case 109: // VRI-a
  4291  		op, m3, _ := vop(p.As)
  4292  		i2 := uint32(c.vregoff(&p.From))
  4293  		if p.GetFrom3() != nil {
  4294  			m3 = uint32(c.vregoff(&p.From))
  4295  			i2 = uint32(c.vregoff(p.GetFrom3()))
  4296  		}
  4297  		switch p.As {
  4298  		case AVZERO:
  4299  			i2 = 0
  4300  		case AVONE:
  4301  			i2 = 0xffff
  4302  		}
  4303  		zVRIa(op, uint32(p.To.Reg), i2, m3, asm)
  4304  
  4305  	case 110:
  4306  		op, m4, _ := vop(p.As)
  4307  		i2 := uint32(c.vregoff(&p.From))
  4308  		i3 := uint32(c.vregoff(p.GetFrom3()))
  4309  		zVRIb(op, uint32(p.To.Reg), i2, i3, m4, asm)
  4310  
  4311  	case 111:
  4312  		op, m4, _ := vop(p.As)
  4313  		i2 := uint32(c.vregoff(&p.From))
  4314  		zVRIc(op, uint32(p.To.Reg), uint32(p.Reg), i2, m4, asm)
  4315  
  4316  	case 112:
  4317  		op, m5, _ := vop(p.As)
  4318  		i4 := uint32(c.vregoff(&p.From))
  4319  		zVRId(op, uint32(p.To.Reg), uint32(p.Reg), uint32(p.GetFrom3().Reg), i4, m5, asm)
  4320  
  4321  	case 113:
  4322  		op, m4, _ := vop(p.As)
  4323  		m5 := singleElementMask(p.As)
  4324  		i3 := uint32(c.vregoff(&p.From))
  4325  		zVRIe(op, uint32(p.To.Reg), uint32(p.Reg), i3, m5, m4, asm)
  4326  
  4327  	case 114: // VRR-a
  4328  		op, m3, m5 := vop(p.As)
  4329  		m4 := singleElementMask(p.As)
  4330  		zVRRa(op, uint32(p.To.Reg), uint32(p.From.Reg), m5, m4, m3, asm)
  4331  
  4332  	case 115: // VRR-a COMPARE
  4333  		op, m3, m5 := vop(p.As)
  4334  		m4 := singleElementMask(p.As)
  4335  		zVRRa(op, uint32(p.From.Reg), uint32(p.To.Reg), m5, m4, m3, asm)
  4336  
  4337  	case 117: // VRR-b
  4338  		op, m4, m5 := vop(p.As)
  4339  		zVRRb(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), m5, m4, asm)
  4340  
  4341  	case 118: // VRR-c
  4342  		op, m4, m6 := vop(p.As)
  4343  		m5 := singleElementMask(p.As)
  4344  		v3 := p.Reg
  4345  		if v3 == 0 {
  4346  			v3 = p.To.Reg
  4347  		}
  4348  		zVRRc(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(v3), m6, m5, m4, asm)
  4349  
  4350  	case 119: // VRR-c SHIFT/ROTATE/DIVIDE/SUB (rhs value on the left, like SLD, DIV etc.)
  4351  		op, m4, m6 := vop(p.As)
  4352  		m5 := singleElementMask(p.As)
  4353  		v2 := p.Reg
  4354  		if v2 == 0 {
  4355  			v2 = p.To.Reg
  4356  		}
  4357  		zVRRc(op, uint32(p.To.Reg), uint32(v2), uint32(p.From.Reg), m6, m5, m4, asm)
  4358  
  4359  	case 120: // VRR-d
  4360  		op, m6, m5 := vop(p.As)
  4361  		v1 := uint32(p.To.Reg)
  4362  		v2 := uint32(p.From.Reg)
  4363  		v3 := uint32(p.Reg)
  4364  		v4 := uint32(p.GetFrom3().Reg)
  4365  		zVRRd(op, v1, v2, v3, m6, m5, v4, asm)
  4366  
  4367  	case 121: // VRR-e
  4368  		op, m6, _ := vop(p.As)
  4369  		m5 := singleElementMask(p.As)
  4370  		v1 := uint32(p.To.Reg)
  4371  		v2 := uint32(p.From.Reg)
  4372  		v3 := uint32(p.Reg)
  4373  		v4 := uint32(p.GetFrom3().Reg)
  4374  		zVRRe(op, v1, v2, v3, m6, m5, v4, asm)
  4375  
  4376  	case 122: // VRR-f LOAD VRS FROM GRS DISJOINT
  4377  		op, _, _ := vop(p.As)
  4378  		zVRRf(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), asm)
  4379  
  4380  	case 123: // VPDI $m4, V2, V3, V1
  4381  		op, _, _ := vop(p.As)
  4382  		m4 := c.regoff(&p.From)
  4383  		zVRRc(op, uint32(p.To.Reg), uint32(p.Reg), uint32(p.GetFrom3().Reg), 0, 0, uint32(m4), asm)
  4384  
  4385  	case 124:
  4386  		var opcode uint32
  4387  		switch p.As {
  4388  		default:
  4389  			c.ctxt.Diag("unexpected opcode %v", p.As)
  4390  		case AKM, AKMC, AKLMD:
  4391  			if p.From.Reg == REG_R0 {
  4392  				c.ctxt.Diag("input must not be R0 in %v", p)
  4393  			}
  4394  			if p.From.Reg&1 != 0 {
  4395  				c.ctxt.Diag("input must be even register in %v", p)
  4396  			}
  4397  			if p.To.Reg == REG_R0 {
  4398  				c.ctxt.Diag("second argument must not be R0 in %v", p)
  4399  			}
  4400  			if p.To.Reg&1 != 0 {
  4401  				c.ctxt.Diag("second argument must be even register in %v", p)
  4402  			}
  4403  			if p.As == AKM {
  4404  				opcode = op_KM
  4405  			} else if p.As == AKMC {
  4406  				opcode = op_KMC
  4407  			} else {
  4408  				opcode = op_KLMD
  4409  			}
  4410  		case AKIMD:
  4411  			if p.To.Reg == REG_R0 {
  4412  				c.ctxt.Diag("second argument must not be R0 in %v", p)
  4413  			}
  4414  			if p.To.Reg&1 != 0 {
  4415  				c.ctxt.Diag("second argument must be even register in %v", p)
  4416  			}
  4417  			opcode = op_KIMD
  4418  		}
  4419  		zRRE(opcode, uint32(p.From.Reg), uint32(p.To.Reg), asm)
  4420  
  4421  	case 125: // KDSA sign and verify
  4422  		if p.To.Reg == REG_R0 {
  4423  			c.ctxt.Diag("second argument must not be R0 in %v", p)
  4424  		}
  4425  		if p.To.Reg&1 != 0 {
  4426  			c.ctxt.Diag("second argument must be an even register in %v", p)
  4427  		}
  4428  		zRRE(op_KDSA, uint32(p.From.Reg), uint32(p.To.Reg), asm)
  4429  
  4430  	case 126: // KMA and KMCTR - CIPHER MESSAGE WITH AUTHENTICATION; CIPHER MESSAGE WITH COUNTER
  4431  		var opcode uint32
  4432  		switch p.As {
  4433  		default:
  4434  			c.ctxt.Diag("unexpected opcode %v", p.As)
  4435  		case AKMA, AKMCTR:
  4436  			if p.From.Reg == REG_R0 {
  4437  				c.ctxt.Diag("input argument must not be R0 in %v", p)
  4438  			}
  4439  			if p.From.Reg&1 != 0 {
  4440  				c.ctxt.Diag("input argument must be even register in %v", p)
  4441  			}
  4442  			if p.To.Reg == REG_R0 {
  4443  				c.ctxt.Diag("output argument must not be R0 in %v", p)
  4444  			}
  4445  			if p.To.Reg&1 != 0 {
  4446  				c.ctxt.Diag("output argument must be an even register in %v", p)
  4447  			}
  4448  			if p.Reg == REG_R0 {
  4449  				c.ctxt.Diag("third argument must not be R0 in %v", p)
  4450  			}
  4451  			if p.Reg&1 != 0 {
  4452  				c.ctxt.Diag("third argument must be even register in %v", p)
  4453  			}
  4454  			if p.As == AKMA {
  4455  				opcode = op_KMA
  4456  			} else if p.As == AKMCTR {
  4457  				opcode = op_KMCTR
  4458  			}
  4459  		}
  4460  		zRRF(opcode, uint32(p.Reg), 0, uint32(p.From.Reg), uint32(p.To.Reg), asm)
  4461  
  4462  	case 127:
  4463  		// NOTE: Mapping MVCLE operands is as follows:
  4464  		// Instruction Format: MVCLE R1,R3,D2(B2)
  4465  		// R1 - prog.To (for Destination)
  4466  		// R3 - prog.Reg (for Source)
  4467  		// B2 - prog.From (for Padding Byte)
  4468  		d2 := c.regoff(&p.From)
  4469  		if p.To.Reg&1 != 0 {
  4470  			c.ctxt.Diag("output argument must be even register in %v", p)
  4471  		}
  4472  		if p.Reg&1 != 0 {
  4473  			c.ctxt.Diag("input argument must be an even register in %v", p)
  4474  		}
  4475  		if (p.From.Reg == p.To.Reg) || (p.From.Reg == p.Reg) {
  4476  			c.ctxt.Diag("padding byte register cannot be same as input or output register %v", p)
  4477  		}
  4478  		zRS(op_MVCLE, uint32(p.To.Reg), uint32(p.Reg), uint32(p.From.Reg), uint32(d2), asm)
  4479  
  4480  	case 128: // VRR-c floating point max/min
  4481  		op, m4, _ := vop(p.As)
  4482  		m5 := singleElementMask(p.As)
  4483  		m6 := uint32(c.vregoff(&p.From))
  4484  		zVRRc(op, uint32(p.To.Reg), uint32(p.Reg), uint32(p.GetFrom3().Reg), m6, m5, m4, asm)
  4485  	}
  4486  }
  4487  
  4488  func (c *ctxtz) vregoff(a *obj.Addr) int64 {
  4489  	c.instoffset = 0
  4490  	if a != nil {
  4491  		c.aclass(a)
  4492  	}
  4493  	return c.instoffset
  4494  }
  4495  
  4496  func (c *ctxtz) regoff(a *obj.Addr) int32 {
  4497  	return int32(c.vregoff(a))
  4498  }
  4499  
  4500  // find if the displacement is within 12 bit.
  4501  func isU12(displacement int32) bool {
  4502  	return displacement >= 0 && displacement < DISP12
  4503  }
  4504  
  4505  // zopload12 returns the RX op with 12 bit displacement for the given load.
  4506  func (c *ctxtz) zopload12(a obj.As) (uint32, bool) {
  4507  	switch a {
  4508  	case AFMOVD:
  4509  		return op_LD, true
  4510  	case AFMOVS:
  4511  		return op_LE, true
  4512  	}
  4513  	return 0, false
  4514  }
  4515  
  4516  // zopload returns the RXY op for the given load.
  4517  func (c *ctxtz) zopload(a obj.As) uint32 {
  4518  	switch a {
  4519  	// fixed point load
  4520  	case AMOVD:
  4521  		return op_LG
  4522  	case AMOVW:
  4523  		return op_LGF
  4524  	case AMOVWZ:
  4525  		return op_LLGF
  4526  	case AMOVH:
  4527  		return op_LGH
  4528  	case AMOVHZ:
  4529  		return op_LLGH
  4530  	case AMOVB:
  4531  		return op_LGB
  4532  	case AMOVBZ:
  4533  		return op_LLGC
  4534  
  4535  	// floating point load
  4536  	case AFMOVD:
  4537  		return op_LDY
  4538  	case AFMOVS:
  4539  		return op_LEY
  4540  
  4541  	// byte reversed load
  4542  	case AMOVDBR:
  4543  		return op_LRVG
  4544  	case AMOVWBR:
  4545  		return op_LRV
  4546  	case AMOVHBR:
  4547  		return op_LRVH
  4548  	}
  4549  
  4550  	c.ctxt.Diag("unknown store opcode %v", a)
  4551  	return 0
  4552  }
  4553  
  4554  // zopstore12 returns the RX op with 12 bit displacement for the given store.
  4555  func (c *ctxtz) zopstore12(a obj.As) (uint32, bool) {
  4556  	switch a {
  4557  	case AFMOVD:
  4558  		return op_STD, true
  4559  	case AFMOVS:
  4560  		return op_STE, true
  4561  	case AMOVW, AMOVWZ:
  4562  		return op_ST, true
  4563  	case AMOVH, AMOVHZ:
  4564  		return op_STH, true
  4565  	case AMOVB, AMOVBZ:
  4566  		return op_STC, true
  4567  	}
  4568  	return 0, false
  4569  }
  4570  
  4571  // zopstore returns the RXY op for the given store.
  4572  func (c *ctxtz) zopstore(a obj.As) uint32 {
  4573  	switch a {
  4574  	// fixed point store
  4575  	case AMOVD:
  4576  		return op_STG
  4577  	case AMOVW, AMOVWZ:
  4578  		return op_STY
  4579  	case AMOVH, AMOVHZ:
  4580  		return op_STHY
  4581  	case AMOVB, AMOVBZ:
  4582  		return op_STCY
  4583  
  4584  	// floating point store
  4585  	case AFMOVD:
  4586  		return op_STDY
  4587  	case AFMOVS:
  4588  		return op_STEY
  4589  
  4590  	// byte reversed store
  4591  	case AMOVDBR:
  4592  		return op_STRVG
  4593  	case AMOVWBR:
  4594  		return op_STRV
  4595  	case AMOVHBR:
  4596  		return op_STRVH
  4597  	}
  4598  
  4599  	c.ctxt.Diag("unknown store opcode %v", a)
  4600  	return 0
  4601  }
  4602  
  4603  // zoprre returns the RRE op for the given a.
  4604  func (c *ctxtz) zoprre(a obj.As) uint32 {
  4605  	switch a {
  4606  	case ACMP:
  4607  		return op_CGR
  4608  	case ACMPU:
  4609  		return op_CLGR
  4610  	case AFCMPO: //ordered
  4611  		return op_KDBR
  4612  	case AFCMPU: //unordered
  4613  		return op_CDBR
  4614  	case ACEBR:
  4615  		return op_CEBR
  4616  	}
  4617  	c.ctxt.Diag("unknown rre opcode %v", a)
  4618  	return 0
  4619  }
  4620  
  4621  // zoprr returns the RR op for the given a.
  4622  func (c *ctxtz) zoprr(a obj.As) uint32 {
  4623  	switch a {
  4624  	case ACMPW:
  4625  		return op_CR
  4626  	case ACMPWU:
  4627  		return op_CLR
  4628  	}
  4629  	c.ctxt.Diag("unknown rr opcode %v", a)
  4630  	return 0
  4631  }
  4632  
  4633  // zopril returns the RIL op for the given a.
  4634  func (c *ctxtz) zopril(a obj.As) uint32 {
  4635  	switch a {
  4636  	case ACMP:
  4637  		return op_CGFI
  4638  	case ACMPU:
  4639  		return op_CLGFI
  4640  	case ACMPW:
  4641  		return op_CFI
  4642  	case ACMPWU:
  4643  		return op_CLFI
  4644  	}
  4645  	c.ctxt.Diag("unknown ril opcode %v", a)
  4646  	return 0
  4647  }
  4648  
  4649  // z instructions sizes
  4650  const (
  4651  	sizeE    = 2
  4652  	sizeI    = 2
  4653  	sizeIE   = 4
  4654  	sizeMII  = 6
  4655  	sizeRI   = 4
  4656  	sizeRI1  = 4
  4657  	sizeRI2  = 4
  4658  	sizeRI3  = 4
  4659  	sizeRIE  = 6
  4660  	sizeRIE1 = 6
  4661  	sizeRIE2 = 6
  4662  	sizeRIE3 = 6
  4663  	sizeRIE4 = 6
  4664  	sizeRIE5 = 6
  4665  	sizeRIE6 = 6
  4666  	sizeRIL  = 6
  4667  	sizeRIL1 = 6
  4668  	sizeRIL2 = 6
  4669  	sizeRIL3 = 6
  4670  	sizeRIS  = 6
  4671  	sizeRR   = 2
  4672  	sizeRRD  = 4
  4673  	sizeRRE  = 4
  4674  	sizeRRF  = 4
  4675  	sizeRRF1 = 4
  4676  	sizeRRF2 = 4
  4677  	sizeRRF3 = 4
  4678  	sizeRRF4 = 4
  4679  	sizeRRF5 = 4
  4680  	sizeRRR  = 2
  4681  	sizeRRS  = 6
  4682  	sizeRS   = 4
  4683  	sizeRS1  = 4
  4684  	sizeRS2  = 4
  4685  	sizeRSI  = 4
  4686  	sizeRSL  = 6
  4687  	sizeRSY  = 6
  4688  	sizeRSY1 = 6
  4689  	sizeRSY2 = 6
  4690  	sizeRX   = 4
  4691  	sizeRX1  = 4
  4692  	sizeRX2  = 4
  4693  	sizeRXE  = 6
  4694  	sizeRXF  = 6
  4695  	sizeRXY  = 6
  4696  	sizeRXY1 = 6
  4697  	sizeRXY2 = 6
  4698  	sizeS    = 4
  4699  	sizeSI   = 4
  4700  	sizeSIL  = 6
  4701  	sizeSIY  = 6
  4702  	sizeSMI  = 6
  4703  	sizeSS   = 6
  4704  	sizeSS1  = 6
  4705  	sizeSS2  = 6
  4706  	sizeSS3  = 6
  4707  	sizeSS4  = 6
  4708  	sizeSS5  = 6
  4709  	sizeSS6  = 6
  4710  	sizeSSE  = 6
  4711  	sizeSSF  = 6
  4712  )
  4713  
  4714  // instruction format variations
  4715  type form int
  4716  
  4717  const (
  4718  	_a form = iota
  4719  	_b
  4720  	_c
  4721  	_d
  4722  	_e
  4723  	_f
  4724  )
  4725  
  4726  func zE(op uint32, asm *[]byte) {
  4727  	*asm = append(*asm, uint8(op>>8), uint8(op))
  4728  }
  4729  
  4730  func zI(op, i1 uint32, asm *[]byte) {
  4731  	*asm = append(*asm, uint8(op>>8), uint8(i1))
  4732  }
  4733  
  4734  func zRI(op, r1_m1, i2_ri2 uint32, asm *[]byte) {
  4735  	*asm = append(*asm,
  4736  		uint8(op>>8),
  4737  		(uint8(r1_m1)<<4)|(uint8(op)&0x0F),
  4738  		uint8(i2_ri2>>8),
  4739  		uint8(i2_ri2))
  4740  }
  4741  
  4742  // Expected argument values for the instruction formats.
  4743  //
  4744  // Format    a1  a2   a3  a4  a5  a6  a7
  4745  // ------------------------------------
  4746  // a         r1,  0,  i2,  0,  0, m3,  0
  4747  // b         r1, r2, ri4,  0,  0, m3,  0
  4748  // c         r1, m3, ri4,  0,  0,  0, i2
  4749  // d         r1, r3,  i2,  0,  0,  0,  0
  4750  // e         r1, r3, ri2,  0,  0,  0,  0
  4751  // f         r1, r2,   0, i3, i4,  0, i5
  4752  // g         r1, m3,  i2,  0,  0,  0,  0
  4753  func zRIE(f form, op, r1, r2_m3_r3, i2_ri4_ri2, i3, i4, m3, i2_i5 uint32, asm *[]byte) {
  4754  	*asm = append(*asm, uint8(op>>8), uint8(r1)<<4|uint8(r2_m3_r3&0x0F))
  4755  
  4756  	switch f {
  4757  	default:
  4758  		*asm = append(*asm, uint8(i2_ri4_ri2>>8), uint8(i2_ri4_ri2))
  4759  	case _f:
  4760  		*asm = append(*asm, uint8(i3), uint8(i4))
  4761  	}
  4762  
  4763  	switch f {
  4764  	case _a, _b:
  4765  		*asm = append(*asm, uint8(m3)<<4)
  4766  	default:
  4767  		*asm = append(*asm, uint8(i2_i5))
  4768  	}
  4769  
  4770  	*asm = append(*asm, uint8(op))
  4771  }
  4772  
  4773  func zRIL(f form, op, r1_m1, i2_ri2 uint32, asm *[]byte) {
  4774  	if f == _a || f == _b {
  4775  		r1_m1 = r1_m1 - obj.RBaseS390X // this is a register base
  4776  	}
  4777  	*asm = append(*asm,
  4778  		uint8(op>>8),
  4779  		(uint8(r1_m1)<<4)|(uint8(op)&0x0F),
  4780  		uint8(i2_ri2>>24),
  4781  		uint8(i2_ri2>>16),
  4782  		uint8(i2_ri2>>8),
  4783  		uint8(i2_ri2))
  4784  }
  4785  
  4786  func zRR(op, r1, r2 uint32, asm *[]byte) {
  4787  	*asm = append(*asm, uint8(op>>8), (uint8(r1)<<4)|uint8(r2&0x0F))
  4788  }
  4789  
  4790  func zRRD(op, r1, r3, r2 uint32, asm *[]byte) {
  4791  	*asm = append(*asm,
  4792  		uint8(op>>8),
  4793  		uint8(op),
  4794  		uint8(r1)<<4,
  4795  		(uint8(r3)<<4)|uint8(r2&0x0F))
  4796  }
  4797  
  4798  func zRRE(op, r1, r2 uint32, asm *[]byte) {
  4799  	*asm = append(*asm,
  4800  		uint8(op>>8),
  4801  		uint8(op),
  4802  		0,
  4803  		(uint8(r1)<<4)|uint8(r2&0x0F))
  4804  }
  4805  
  4806  func zRRF(op, r3_m3, m4, r1, r2 uint32, asm *[]byte) {
  4807  	*asm = append(*asm,
  4808  		uint8(op>>8),
  4809  		uint8(op),
  4810  		(uint8(r3_m3)<<4)|uint8(m4&0x0F),
  4811  		(uint8(r1)<<4)|uint8(r2&0x0F))
  4812  }
  4813  
  4814  func zRS(op, r1, r3_m3, b2, d2 uint32, asm *[]byte) {
  4815  	*asm = append(*asm,
  4816  		uint8(op>>8),
  4817  		(uint8(r1)<<4)|uint8(r3_m3&0x0F),
  4818  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4819  		uint8(d2))
  4820  }
  4821  
  4822  func zRSY(op, r1, r3_m3, b2, d2 uint32, asm *[]byte) {
  4823  	dl2 := uint16(d2) & 0x0FFF
  4824  	*asm = append(*asm,
  4825  		uint8(op>>8),
  4826  		(uint8(r1)<<4)|uint8(r3_m3&0x0F),
  4827  		(uint8(b2)<<4)|(uint8(dl2>>8)&0x0F),
  4828  		uint8(dl2),
  4829  		uint8(d2>>12),
  4830  		uint8(op))
  4831  }
  4832  
  4833  func zRX(op, r1_m1, x2, b2, d2 uint32, asm *[]byte) {
  4834  	*asm = append(*asm,
  4835  		uint8(op>>8),
  4836  		(uint8(r1_m1)<<4)|uint8(x2&0x0F),
  4837  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4838  		uint8(d2))
  4839  }
  4840  
  4841  func zRXE(op, r1, x2, b2, d2, m3 uint32, asm *[]byte) {
  4842  	*asm = append(*asm,
  4843  		uint8(op>>8),
  4844  		(uint8(r1)<<4)|uint8(x2&0x0F),
  4845  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4846  		uint8(d2),
  4847  		uint8(m3)<<4,
  4848  		uint8(op))
  4849  }
  4850  
  4851  func zRXY(op, r1_m1, x2, b2, d2 uint32, asm *[]byte) {
  4852  	dl2 := uint16(d2) & 0x0FFF
  4853  	*asm = append(*asm,
  4854  		uint8(op>>8),
  4855  		(uint8(r1_m1)<<4)|uint8(x2&0x0F),
  4856  		(uint8(b2)<<4)|(uint8(dl2>>8)&0x0F),
  4857  		uint8(dl2),
  4858  		uint8(d2>>12),
  4859  		uint8(op))
  4860  }
  4861  
  4862  func zS(op, b2, d2 uint32, asm *[]byte) {
  4863  	*asm = append(*asm,
  4864  		uint8(op>>8),
  4865  		uint8(op),
  4866  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4867  		uint8(d2))
  4868  }
  4869  
  4870  func zSI(op, i2, b1, d1 uint32, asm *[]byte) {
  4871  	*asm = append(*asm,
  4872  		uint8(op>>8),
  4873  		uint8(i2),
  4874  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4875  		uint8(d1))
  4876  }
  4877  
  4878  func zSIL(op, b1, d1, i2 uint32, asm *[]byte) {
  4879  	*asm = append(*asm,
  4880  		uint8(op>>8),
  4881  		uint8(op),
  4882  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4883  		uint8(d1),
  4884  		uint8(i2>>8),
  4885  		uint8(i2))
  4886  }
  4887  
  4888  func zSIY(op, i2, b1, d1 uint32, asm *[]byte) {
  4889  	dl1 := uint16(d1) & 0x0FFF
  4890  	*asm = append(*asm,
  4891  		uint8(op>>8),
  4892  		uint8(i2),
  4893  		(uint8(b1)<<4)|(uint8(dl1>>8)&0x0F),
  4894  		uint8(dl1),
  4895  		uint8(d1>>12),
  4896  		uint8(op))
  4897  }
  4898  
  4899  // Expected argument values for the instruction formats.
  4900  //
  4901  // Format    a1  a2  a3  a4  a5  a6
  4902  // -------------------------------
  4903  // a         l1,  0, b1, d1, b2, d2
  4904  // b         l1, l2, b1, d1, b2, d2
  4905  // c         l1, i3, b1, d1, b2, d2
  4906  // d         r1, r3, b1, d1, b2, d2
  4907  // e         r1, r3, b2, d2, b4, d4
  4908  // f          0, l2, b1, d1, b2, d2
  4909  func zSS(f form, op, l1_r1, l2_i3_r3, b1_b2, d1_d2, b2_b4, d2_d4 uint32, asm *[]byte) {
  4910  	*asm = append(*asm, uint8(op>>8))
  4911  
  4912  	switch f {
  4913  	case _a:
  4914  		*asm = append(*asm, uint8(l1_r1))
  4915  	case _b, _c, _d, _e:
  4916  		*asm = append(*asm, (uint8(l1_r1)<<4)|uint8(l2_i3_r3&0x0F))
  4917  	case _f:
  4918  		*asm = append(*asm, uint8(l2_i3_r3))
  4919  	}
  4920  
  4921  	*asm = append(*asm,
  4922  		(uint8(b1_b2)<<4)|uint8((d1_d2>>8)&0x0F),
  4923  		uint8(d1_d2),
  4924  		(uint8(b2_b4)<<4)|uint8((d2_d4>>8)&0x0F),
  4925  		uint8(d2_d4))
  4926  }
  4927  
  4928  func rxb(va, vb, vc, vd uint32) uint8 {
  4929  	mask := uint8(0)
  4930  	if va >= REG_V16 && va <= REG_V31 {
  4931  		mask |= 0x8
  4932  	}
  4933  	if vb >= REG_V16 && vb <= REG_V31 {
  4934  		mask |= 0x4
  4935  	}
  4936  	if vc >= REG_V16 && vc <= REG_V31 {
  4937  		mask |= 0x2
  4938  	}
  4939  	if vd >= REG_V16 && vd <= REG_V31 {
  4940  		mask |= 0x1
  4941  	}
  4942  	return mask
  4943  }
  4944  
  4945  func zVRX(op, v1, x2, b2, d2, m3 uint32, asm *[]byte) {
  4946  	*asm = append(*asm,
  4947  		uint8(op>>8),
  4948  		(uint8(v1)<<4)|(uint8(x2)&0xf),
  4949  		(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
  4950  		uint8(d2),
  4951  		(uint8(m3)<<4)|rxb(v1, 0, 0, 0),
  4952  		uint8(op))
  4953  }
  4954  
  4955  func zVRV(op, v1, v2, b2, d2, m3 uint32, asm *[]byte) {
  4956  	*asm = append(*asm,
  4957  		uint8(op>>8),
  4958  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4959  		(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
  4960  		uint8(d2),
  4961  		(uint8(m3)<<4)|rxb(v1, v2, 0, 0),
  4962  		uint8(op))
  4963  }
  4964  
  4965  func zVRS(op, v1, v3_r3, b2, d2, m4 uint32, asm *[]byte) {
  4966  	*asm = append(*asm,
  4967  		uint8(op>>8),
  4968  		(uint8(v1)<<4)|(uint8(v3_r3)&0xf),
  4969  		(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
  4970  		uint8(d2),
  4971  		(uint8(m4)<<4)|rxb(v1, v3_r3, 0, 0),
  4972  		uint8(op))
  4973  }
  4974  
  4975  func zVRRa(op, v1, v2, m5, m4, m3 uint32, asm *[]byte) {
  4976  	*asm = append(*asm,
  4977  		uint8(op>>8),
  4978  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4979  		0,
  4980  		(uint8(m5)<<4)|(uint8(m4)&0xf),
  4981  		(uint8(m3)<<4)|rxb(v1, v2, 0, 0),
  4982  		uint8(op))
  4983  }
  4984  
  4985  func zVRRb(op, v1, v2, v3, m5, m4 uint32, asm *[]byte) {
  4986  	*asm = append(*asm,
  4987  		uint8(op>>8),
  4988  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4989  		uint8(v3)<<4,
  4990  		uint8(m5)<<4,
  4991  		(uint8(m4)<<4)|rxb(v1, v2, v3, 0),
  4992  		uint8(op))
  4993  }
  4994  
  4995  func zVRRc(op, v1, v2, v3, m6, m5, m4 uint32, asm *[]byte) {
  4996  	*asm = append(*asm,
  4997  		uint8(op>>8),
  4998  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4999  		uint8(v3)<<4,
  5000  		(uint8(m6)<<4)|(uint8(m5)&0xf),
  5001  		(uint8(m4)<<4)|rxb(v1, v2, v3, 0),
  5002  		uint8(op))
  5003  }
  5004  
  5005  func zVRRd(op, v1, v2, v3, m5, m6, v4 uint32, asm *[]byte) {
  5006  	*asm = append(*asm,
  5007  		uint8(op>>8),
  5008  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  5009  		(uint8(v3)<<4)|(uint8(m5)&0xf),
  5010  		uint8(m6)<<4,
  5011  		(uint8(v4)<<4)|rxb(v1, v2, v3, v4),
  5012  		uint8(op))
  5013  }
  5014  
  5015  func zVRRe(op, v1, v2, v3, m6, m5, v4 uint32, asm *[]byte) {
  5016  	*asm = append(*asm,
  5017  		uint8(op>>8),
  5018  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  5019  		(uint8(v3)<<4)|(uint8(m6)&0xf),
  5020  		uint8(m5),
  5021  		(uint8(v4)<<4)|rxb(v1, v2, v3, v4),
  5022  		uint8(op))
  5023  }
  5024  
  5025  func zVRRf(op, v1, r2, r3 uint32, asm *[]byte) {
  5026  	*asm = append(*asm,
  5027  		uint8(op>>8),
  5028  		(uint8(v1)<<4)|(uint8(r2)&0xf),
  5029  		uint8(r3)<<4,
  5030  		0,
  5031  		rxb(v1, 0, 0, 0),
  5032  		uint8(op))
  5033  }
  5034  
  5035  func zVRIa(op, v1, i2, m3 uint32, asm *[]byte) {
  5036  	*asm = append(*asm,
  5037  		uint8(op>>8),
  5038  		uint8(v1)<<4,
  5039  		uint8(i2>>8),
  5040  		uint8(i2),
  5041  		(uint8(m3)<<4)|rxb(v1, 0, 0, 0),
  5042  		uint8(op))
  5043  }
  5044  
  5045  func zVRIb(op, v1, i2, i3, m4 uint32, asm *[]byte) {
  5046  	*asm = append(*asm,
  5047  		uint8(op>>8),
  5048  		uint8(v1)<<4,
  5049  		uint8(i2),
  5050  		uint8(i3),
  5051  		(uint8(m4)<<4)|rxb(v1, 0, 0, 0),
  5052  		uint8(op))
  5053  }
  5054  
  5055  func zVRIc(op, v1, v3, i2, m4 uint32, asm *[]byte) {
  5056  	*asm = append(*asm,
  5057  		uint8(op>>8),
  5058  		(uint8(v1)<<4)|(uint8(v3)&0xf),
  5059  		uint8(i2>>8),
  5060  		uint8(i2),
  5061  		(uint8(m4)<<4)|rxb(v1, v3, 0, 0),
  5062  		uint8(op))
  5063  }
  5064  
  5065  func zVRId(op, v1, v2, v3, i4, m5 uint32, asm *[]byte) {
  5066  	*asm = append(*asm,
  5067  		uint8(op>>8),
  5068  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  5069  		uint8(v3)<<4,
  5070  		uint8(i4),
  5071  		(uint8(m5)<<4)|rxb(v1, v2, v3, 0),
  5072  		uint8(op))
  5073  }
  5074  
  5075  func zVRIe(op, v1, v2, i3, m5, m4 uint32, asm *[]byte) {
  5076  	*asm = append(*asm,
  5077  		uint8(op>>8),
  5078  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  5079  		uint8(i3>>4),
  5080  		(uint8(i3)<<4)|(uint8(m5)&0xf),
  5081  		(uint8(m4)<<4)|rxb(v1, v2, 0, 0),
  5082  		uint8(op))
  5083  }
  5084  

View as plain text